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ABSTRACT

This paper presents a critical review of the work published at

ICSE’2016 on a practical guide of quality indicator selection for

assessing multiobjective solution sets in search-based software

engineering (SBSE). This review has two goals. First, we aim at

explaining why we disagree with the work at ICSE’2016 and why

the reasons behind this disagreement are important to the SBSE

community. Second, we aim at providing a more clari�ed guide

of quality indicator selection, serving as a new direction on this

particular topic for the SBSE community. In particular, we argue

that it does matter which quality indicator to select, whatever in

the same quality category or across di�erent categories. This claim

is based upon the fundamental goal of multiobjective optimisation

— supplying the decision-maker a set of solutions which are the

most consistent with their preferences.

CCS CONCEPTS

• Software and its engineering → Search-based software en-

gineering;
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1 INTRODUCTION

The growing interest in simultaneously dealing with multiple ob-

jectives in software engineering results in a signi�cant number of

search methods, e.g., various heuristics and metaheuristics, for a

broad range of problems [2, 10, 11]. These multiobjective search

methods typically aim to generate a set of representative solutions

to the whole Pareto optimal front from which the decision-maker

(DM) can choose their favourite one. This raises an important re-

search topic — how to evaluate and compare the quality of solution

sets generated by di�erent search methods; i.e., which kind of solu-

tion set is more likely to be preferred by the DM.

Over the last two decades, a large number of quality indica-

tors have been emerging in �elds of evolutionary computation [20],

mathematical optimisation [12], and operations research [1]. Among

them, many have already been frequently used in Search-Based

Software Engineering (SBSE), such as Hypervolume (HV) [19] and

ϵ-indicator [20]. However, the variety of quality indicators may

overwhelm the user in the SBSE community, as every indicator

works solely on a speci�c quality aspect of solution sets. This leads

to a practical issue of how to select quality indicators to properly

evaluate solution sets in SBSE.

The work of Wang et al. [15] (in ICSE’2016) is a notable endeav-

our to address this important issue. They attempted to provide a

practical guide for the SBSE practitioners to select quality indica-

tors for assessing which search method is “better”. The authors

�rst divided eight most frequently-used quality indicators in SBSE

into four categories: Convergence, Diversity, Combination and Cov-

erage. Then, through extensively empirical investigations they have

drawn several fundamental conclusions about the selection of qual-

ity indicators. For example, they have concluded that it dose not

matter which indicators to select within the same Convergence or

Combination category, and also it dose not matter which indicators

to select across Convergence and Coverage categories. Finally, they

summarised a guide on how to select indicators in SBSE.

Wang et al.’s paper represents a growing recent development

on this particular research topic; since 2016, it has been followed

and exploited by a good few SBSE research groups for di�erent

problems, e.g., in [10] and [11]. However, we argue that there are

discrepancies between Wang et al.’s work and the general goal of

multiobjective optimisation, in terms of both the analytical method



and the conclusions, which may mislead the SBSE community. We

feel that respectful scienti�c debates are very important for sustain-

able research, particularly in such an interdisciplinary topic where

research from the well-established community of multiobjective

optimisation may still be relatively new to the software engineering

researchers. Indeed, explicit criticism may timely reveal the oppos-

ing ideas and can often excite signi�cant growth of the research

�eld (e.g., see [9]). The above motivates this essay with two goals.

First, we aim at explaining why we disagree with Wang et al.’s

paper and why the reasons behind this disagreement are important

to SBSE. Second, we aim at providing the SBSE community a new,

but more clari�ed guide of quality indicator selection and design,

based upon information availability of the DM.

We start by discussing Wang et al.’s paper (Section 2). We show

that some incomprehensive observations from Wang et al.’s pa-

per are due to an inaccurate classi�cation of the quality indicators

studied (Section 3.1). Then, we show that even if an accurate classi-

�cation of quality indicators is made, one still cannot ever draw the

conclusions like one quality indicator being able to replace another

(Section 3.2). This is because there is no equivalence between a (or

a group of) quality indicator and the outperformance relation be-

tween solution sets. Finally, we explain that a reasonable selection

of quality indicators should be in line with the preferences of the

DM, and accordingly provide a more clari�ed guide on indicator

selection with or without the DM’s preferences (Section 4).

2 BRIEF OF WANG ET AL.’S WORK

Presented at the ICSE’2016 [15], Wang et al.’s work chose eight

commonly-used quality indicators in SBSE and placed them into

four categories, Convergence,Diversity, Combination of convergence

and diversity, and Coverage. The authors then tested these indica-

tors in three industrial problems (test suite minimisation, test case

prioritisation and requirements allocation), and from that they have

drawn the following main conclusions:

• For the category Convergence or Combination, it does not matter

which indicator within the same category to select; however, it

does matter for the category Diversity.

• It does matter to select indicators across the categories except

for Convergence and Coverage.

Finally, on the basis of the above observations, a guide of how to

select indicators has been provided for the SBSE community.

3 WHYWANG ET AL.’S WORK IS MISGUIDED

This section isolates two crucial points in Wang et al.’s paper which

can be misguided: the classi�cation of the quality indicators and

the conclusions of indicator selection.

3.1 Misguided Categories of Quality Indicators

Wang et al.’s paper has considered eight quality indicators and clas-

si�ed them into four categories. They are {Convergence: GD [13],

ED [3], ϵ [20]}, {Diversity: GS [17], PFS [5]}, {Combination of con-

vergence and diversity: IGD [4], HV [19]}, and {Coverage: C [19]}.

Convergence refers to how close a solution set is to the Pareto front.

Diversity refers to how well the solutions in a set are distributed; it
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Figure 1: An example that illustrates the ϵ -indicator being capable of re�ect-
ing the diversity (spread) of a solution set (ϵ (A) = 1 < ϵ (B ) = 3), while PFS
and C not (PFS (A) = PFS (B ) = 4, C (A, B ) = C (B, A) = 0.5).

can be further divided into solutions’ uniformity and spread. Cover-

age refers to how well a solution set covers the Pareto front, which

is similar to the concept of the spread of Pareto front [12].

We question the classi�cation that the indicator ϵ falls into Con-

vergence, PFS into Diversity, and C into Coverage. The indicator

(additive) ϵ of a solution set to the Pareto front measures the mini-

mum value that can be added to each point in the Pareto front such

that it can be weakly dominated by (i.e., inferior to or equal to) at

least one solution in the evaluated set. In addition to evaluating con-

vergence, the ϵ-indicator can also measure diversity of a solution

set. Figure 1 gives an example that two solution sets A and B have

the same convergence to the Pareto front, but di�erent diversity

among their solutions. The ϵ-indicator evaluates A signi�cantly

better than B (ϵ (A) = 1 < ϵ (B) = 3) since the upper-left points of

the Pareto front need to move far away to make them be weakly

dominated by a point in B.

The indicator PFS, which counts the number of nondominated

solutions in a set (i.e., cardinality), cannot evaluate the diversity

of the set. Applying the example of Figure 1, both A and B have

four nondominated solutions (so PFS (A) = PFS (B) = 4), but A’s

solutions are diversi�ed better than B.

Given two solution sets, the indicator C measures the proportion

of solutions of one set that are weakly dominated by at least one

solution of the other set. The C result does not re�ect the diversity

or coverage di�erence between two sets, but it can partially re�ects

their convergence di�erence as the dominance relation does not

tell how much better one is superior to the other.

In addition to the above three indicators, the indicator ED only

partially re�ects the convergence of a solution set since it considers

the closest solution of the set to the ideal point of the Pareto front.

The indicator GS only partially re�ects the spread of a solution set

with more than two objectives since the closest distance between

solutions in the set fails to indicate howwell the set covers in a high-

dimensional space [8]. Summarising the above, Table 1 provides

the quality aspect(s) that the eight quality indicators actually re�ect

in evaluating multiobjective solution sets.

An accurate classi�cation of quality indicators is of high im-

portance. It tells people how a solution set performs on a speci�c

Table 1: The eight most frequently-used quality indicators in SBSE, as sur-
veyed in Wang et al.’s paper. Diversity consists of spread (i.e., coverage) and
uniformity. “+” means that the indicator can well re�ect a speci�c quality
feature and “−” means that the indicator can partially re�ect that speci�c
quality feature.

GD ED ϵ -indicator GS PFS IGD HV C

Convergence + − + + + −

Spread + − + +

Uniformity + + + +

Cardinality − + − −
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Figure 2: Two nondominated solutions sets, A and B, for optimising the code
coverage and the cost of testing time [16]. A is evaluated better than B on
all the eight indicators considered in Wang et al’s paper: GD (A) = 0.02 <

GD (B ) = 0.26, ED (A) = 0.5 < ED (B ) = 0.89, ϵ (A) = 0.1 < ϵ (B ) =
0.3, GS (A) = 0.15 < GS (B ) = 0.46, PFS (A) = 5 > PFS (B ) = 4, IGD (A) =
0.02 < IGD (B ) = 0.27, HV (A) = 0.77 > HV (B ) = 0.43, C (A) = 0.8 >

C (B ) = 0.25. However, the DM may be more interested in B (speci�cally so-
lution β ) if they favour the full code coverage and then possible low cost.

quality aspect. In Wang et al.’s paper, the authors have observed

inconsistent results obtained by GS and PFS, and thus concluded

that it matters which indicator to select in the category Diversity.

We think that an important reason for this observation is that PFS

in fact does not re�ect the diversity of a solution set (but rather the

cardinality), and it is likely for solution sets to perform di�erently

in distinct quality aspects.

3.2 Misguided Selection of Quality Indicators

In this section, we discuss the conclusions on quality indicator

selection derived from Wang et al.’s study. We argue that even if an

accurate classi�cation of quality indicators is made, we still cannot

draw the conclusions that it does not matter which indicator to

select, whatever in the same category or across di�erent categories.

In multiobjective optimisation, the general goal for the algorithm

designer is to supply the DM a set of solutions which are the most

consistent with their preferences. When the DM’s preferences are

not known a priori, the quality features that an indicator measures

for is merely an assumption of the DM’s possible preferences. A

solution set being evaluated better than another by an indicator

means that the former is superior under the assumption that the

indicator re�ects the DM’s preferences, but not certainly being

preferred. This also applies to the combination of several indicators.

Figure 2 gives an example on the software test cases generation

problem [16]. As shown, the set A is evaluated better than the set B

by all the eight quality indicators considered in Wang et al.’s paper.

However, depending on the contexts, the DM might �rst favour the

full code coverage and then possible low cost [16]. This will lead to

set B to be of more interest, as it has the most preferred solution

(β) that achieves full coverage and lower cost than the ones in A.

The above example indicates that without considering the DM’s

preferences (if existing), we may use inappropriate indicators for

the quality features which the DM does not care about. From the

perspective of set-based comparison, the underlying reason behind

this is that the two sets in the example are e�ectively incomparable.

Next, we introduce an important set-based relation in multiobjec-

tive optimisation (which has been missing in Wang et al.’s paper).

Suppose there are two solution sets A and B:

Relation 1. [Better relation between two sets [20]] We say that A

is better than B (denoted as A ⊳ B) if for every solution b ∈ B there

exists at least one solution a ∈ A that weakly dominates b, but there

exists at least one solution in A that is not weakly dominated by any

solution in B.

The better relation represents the most general form of supe-

riority between two solution sets; in other words, A ⊳ B means

that A is at least as good as B while B is not so good as A (thus

A always being preferred by the DM). Unfortunately, there is no

equivalence between a (or a group of) quality indicator and the

better relation, which has been proven by Zitzler et al. [20]. This

means no matter howmany indicators we use, we cannot guarantee

that the better-evaluation-result solution set is certainly preferred

by the DM. Back to the example in Figure 2, there exists no solution

inA that dominates the solution β , soA ⋪ B. We thus cannot sayA

being superior to B, despite that A outperforms B on all the quality

aspects, i.e., convergence, spread, uniformity, and cardinality.

4 A CLARIFIED GUIDE

In this section, we provide new, more clari�ed guidelines on how to

select quality indicators to evaluate multiobjective solution sets for

SBSE. Such a guide, as discussed before, needs to be in line with the

DM’s preferences. When the DM’s preferences are unavailable, the

set-based relation ⊳ is the simplest comparison method to check

whether a set is better than another, and it generally meets any

preference potentially articulated by the DM. However, the ⊳ rela-

tion may leave sets incomparable; in fact, in most cases, two sets

under consideration are nondominated to each other. This necessi-

tates quality indicators which represent certain assumptions about

the DM’s preferences. In general, when the DM’s preferences are

unknown, a set of solutions which well represent the Pareto front

are desirable as the DM is likely to �nd their interested solution

from them. Therefore, quality indicators have arrived to re�ect this

“representation” to the Pareto front, which often involve several

quality aspects — convergence, spread, uniformity, and cardinality.

When articulation of the DM’s preferences is clear, such as the

situation that a weight for each objective can be explicitly speci�ed,

quality indicators need to be selected, or even designed, directly

according to the preferences. However, in the software engineering

domain, it is not uncommon that the DM may experience di�culty

in precisely articulating their preferences. The DM may only be

able to provide some vague preference information such as a fuzzy

region around one point or a set of weights in certain space, or

they are more interested in some parts of the Pareto front (e.g.,

knee). As such, quality indicators need to be selected or designed

in accordance with di�erent situations.

Belowwe summarise four general situations of how to select/design

quality indicators based on the availability of DM’s preferences.

(1) When articulation of the DM’s preferences is clear , qual-

ity indicators can be easily selected or designed according to the

preferences. Taking the problem in Figure 2 as an example, an in-

dicator that hierarchically compares the code coverage and then

the cost of test cases can be used to evaluate solution sets. Such a

hierarchical indicator is also useful for the software product line

con�guration problem [6, 10] where the Feature Model’s depen-

dency compliance is always more important than the richness of the

model; thus only the solutions that achieve full dependency com-

pliance are of interest. This is obvious, as violation of dependency

implies faulty con�guration, which has no value in practice.



(2)Whenarticulation of theDM’s preferences is vague/rough,

quality indicators need to be selected or designed to incorporate

the preferences. Some indicators, e.g., HV [19] and IPF [1], allow to

be integrated with a set of biased weights to re�ect the DM’s prefer-

ences [1, 18]. They use a set of uniformly-distributed weights (often

in the unit simplex) to represent the whole Pareto front, and then

restricts the weight space according to some partial information of

the DM’s preferences. Those indicators are most likely to be useful

for the software performance management [11], where the prefer-

ences may be vaguely speci�ed as terms in Service Level Agreement

or Goal Model. An typical example could be “the performance should

be high and the energy consumption should be reasonable".

(3) When the DM is more interested in some speci�c part(s)

of the Pareto front (while willing to look at the whole front),

quality indicators which can deliver that speci�cation need to be

selected. For example, if the DM is more interested in around the

knee of the Pareto front, the HV indicator could be a good choice.

This is particularly true for the cloud autoscaling problem [2], in

which di�erent cloud tenants (users) may impose con�icting ob-

jectives due to the interference and shared infrastructure. Here,

from the prospective of the cloud vendor, ensuring fairness among

tenants of the same class is often the top priority and thus the knee

solutions are more of interest. If the DM is interested in the bound-

ary solutions, HV having the reference point fairly distant from

the solution sets’ boundary (e.g., 2 times of it) can be an option.

This indicator is likely to be useful for the service composition

problem [14] where one may prefer extreme solutions around the

edges, e.g., those with low latency but high cost, or vice versa.

(4) When the DM’s preferences are completely unavailable,

using combined quality indicators, which can re�ect all the general

quality aspects (convergence, spread, uniformity, and cardinality),

is always a good practice; e.g., HV and IGD [4]. If condition permits,

we recommend to use more than one combined indicator as they

deliver di�erent preferences (thus having a high probability of

�tting the DM), such as HV in favour of the knee region and IGD

in favour of the uniformity. If one is more interested in separate

assessment of solution sets’ quality, s/he can use several indicators

to respectively work on di�erent quality aspects, such as GD [13]

for convergence, DCI [8] for diversity, and PFS [5] for cardinality.

Finally, note that the considered quality indicators are desired to

be (weakly) compatible with the ⊳ relation; that is, for two sets A

and B, if A ⊳ B then A will be always evaluated better (not worse)

than B by the indicators. Although this property cannot guarantee

that the better-evaluation-result set between two sets is certainly

preferred by the DM, it can rule out the misleading situation that

the worse-evaluation-result set is always preferred. Among the

indicators mentioned above, IPF and HV are (weak) compatible,

while GD, IGD, PFS and DCI not. To make them compatible (or weak

compatible at least), GD and IGD can be replaced by GD+ [7] and

IGD+ [7], and PFS and DCI can be modi�ed by solely considering

the nondominated solutions w.r.t. other sets in their calculations.

5 CONCLUSION

Quality assessment of solution sets is an important issue in multiob-

jective optimisation, but stay relatively new to the SBSE researchers

and practitioners. Taking Wang et al’s paper as starting point, this

paper has presented the importance of understanding the goal of

quality assessment, and accordingly provided a pragmatic guide of

quality indicator selection based upon the availability of the DM’s

preferences, serving as a new direction for the SBSE community.
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