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ABSTRACT
Security is unarguably the most serious concern for Web appli-
cations, to which SQL injection (SQLi) attack is one of the most
devastating attacks. Automatically testing SQLi vulnerabilities is of
ultimate importance, yet is unfortunately far from trivial to imple-
ment. This is because the existence of a huge, or potentially infinite,
number of variants and semantic possibilities of SQL leading to
SQLi attacks on various Web applications. In this paper, we propose
a deep natural language processing based tool, dubbed DeepSQLi,
to generate test cases for detecting SQLi vulnerabilities. Through
adopting deep learning based neural language model and sequence
of words prediction, DeepSQLi is equipped with the ability to learn
the semantic knowledge embedded in SQLi attacks, allowing it to
translate user inputs (or a test case) into a new test case, which is se-
mantically related and potentially more sophisticated. Experiments
are conducted to compare DeepSQLiwith SQLmap, a state-of-the-art
SQLi testing automation tool, on six real-world Web applications
that are of different scales, characteristics and domains. Empirical
results demonstrate the effectiveness and the remarkable superior-
ity of DeepSQLi over SQLmap, such that more SQLi vulnerabilities
can be identified by using a less number of test cases, whilst running
much faster.

CCS CONCEPTS
• Security and privacy → Web application security; • Soft-
ware and its engineering→ Software testing and debugging.
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1 INTRODUCTION
Web applications have become increasingly ubiquitous and impor-
tant since the ever prevalence of distributed computing paradigms,
such as Cyber-Physical Systems and Internet-of-Things. Yet, they
are unfortunately vulnerable to a variety of security threats, among
which SQL injection (SQLi) has been widely recognised as one of
the most devastating threats. Generally speaking, SQLi is an injec-
tion attack that embeds scripts in user inputs to execute malicious
SQL statements over the relational database management system
(RDBMS) running behind a Web application. As stated in the Aka-
mai report1, SQLi attacks constituted 65.1% of the cyber-attacks
on Web applications during November 2017 to March 2019. It also
shows that the number of different types of Web attacks (e.g., XSS,
LFI and PHPi) has ever increased, but none of them have been
growing as fast as SQLi attacks. Therefore, detecting and prevent-
ing SQLi vulnerabilities are of ultimate importance to improve the
reliability and trustworthiness of modern Web applications.

There are two common approaches to protect Web applications
from SQLi attacks. The first one is customised negative validation,
also known as input validation. Its basic idea is to protect Web appli-
cations from attacks by forbidden patterns or keywords manually
crafted by software engineers. Unfortunately, it is difficult, if not
impossible, to enumerate a comprehensive set of validation rules
that is able to cover all types of attacks. The second approach is
prepared statement that allow embedding user inputs as parame-
ters, also known as placeholders. By doing so, attackers are difficult
to embed SQLi code in user inputs since they are treated as value
for the parameter. However, as discussed in [23] and [24], prepared
statement is difficult to design given the sophistication of defensive
coding guideline. In addition, there are many other terms, such as
dynamic SQL of DDL statement (e.g., create, drop and alter) and
table structure (e.g, names of columns, tables and schema) cannot
be parameterised.

Test case generation, which build test suites for detecting errors
of the system under test (SUT), is the most important and funda-
mental process of software testing. This is a widely used practice
to detect SQLi vulnerabilities where test suites come up with a
set of malicious user inputs that mimic various successful SQLi
attacks, each of which forms a test case. However, enumerating a
comprehensive set of semantically related test cases to fully test
the SUT is extremely challenging, if not impossible. This is because
there are a variety of SQLi attacks, many complex variants of which
share similar SQL semantic. For example, the same attack can be

1 https://www.akamai.com/
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diversified by changing the encoding form, which appears to be
different but is semantically equivalent, in order to evade detection.

Just like human natural language, malicious SQL statements have
their unique semantic. Therefore, test case generation for detecting
SQLi vulnerabilities can take great advantages by exploiting the
knowledge from such semantic naturalness. For example, given a
Web form with two user input fields, i.e., username and password,
the following SQL statement conforms to a SQLi attack:
SELECT * FROM members WHERE
username=‘admin’+OR+‘1’=‘1’ AND password=‘’--’

where the underlined parts are input by a user and constitute a test
case that leads to an attack to the SUT. Given this SQLi attack, we
are able interpret some semantic knowledge as follows.

• This is a tautology attack that is able to use any tautological
clause, e.g., OR 1=1, to alter the statement in a semantically
equivalent and syntactically correct manner without com-
promising its maliciousness.

• To meet the SQL syntax, an injection needs to have an appro-
priate placement of single quotation to complete a SQL state-
ment. Therefore, the attack should be written as admin’+
OR+‘1’=‘1. In addition, the unnecessary part of the original
statement can be commented by --.

• In practice, due to the use of some input filters like firewalls,
blank characters will highly likely be trimmed by modern
Web applications thus leading to the failure of admin’ OR
1=1 to form a tautology attack. By replacing those blank
characters with +, which is semantically equivalent, the at-
tacker is able to disguise the attack in a more sophisticated
manner.

Although semantic knowledge can be interpreted by software engi-
neers, it is far from trivial to leverage such knowledge to automate
the test case generation process.

Traditional test case generation techniques mainly rely on soft-
ware engineers to specify rules to create a set of semantically
tailored test cases, either in a manual [9, 19] or semi-automatic
manner [3, 5, 31]. Such process is of limited flexibility due to the
restriction of human crafted rules. Furthermore, it is expensive in
practice or even be computationally infeasible for modern complex
Web applications.

Recently, there has been a growing interest of applying machine
learning algorithms to develop artificial intelligence (AI) tools that
automate the test case generation process [11, 20, 27, 29] and [22].
This type of methods requires limited human intervention and do
not assume any fixed set of SQL syntax. However, they are mainly
implemented as a classifier that is used to diagnose whether a SQL
statement (or part of it) is a valid statement or a malicious injection.
To the best of our knowledge, none of those existing AI based
tools are able to proactively generate semantically related SQLi
attacks during the testing phase. There have been some attempts
that take semantic knowledge into consideration. For example, [27]
developed a classifier that considers the semantic abnormality of the
OR phrase (e.g., OR 1=1 or OR ’i’ in (’g’, ’i’)) in a tautology
attack. Unfortunately, this method ignores other alternatives, which
might be important when semantically generating SQLi attacks, to
create tautology (e.g., we can use -- to comment out other code) .

Bearing the above considerations in mind, this paper proposes
a deep natural language processing (NLP) based tool2, dubbed
DeepSQLi, which learns and exploits the semantic knowledge and
naturalness of SQLi attacks, to automatically generate various se-
mantically meaningful and maliciously effective test cases. Similar
to the machine translation between dialects of the same language,
DeepSQLi takes a set of normal user inputs or existing test case
for a SQL statement (one dialect) and translates it into another test
case (another dialect), which is semantically related but potentially
more sophisticated, to form a new SQLi attack.

Contributions. The major contributions of this paper are:

• DeepSQLi is a fully automatic, end-to-end tool empowered
by a tailored neural language model trained under the Trans-
former [32] architecture. To the best of our knowledge, this
work is the first of its kind to adopt Transformer to solve
problems in the context of software testing.

• To facilitate the semantic knowledge learning from SQL state-
ment, five mutation operators are developed to help enrich
the training dataset. Unlike the classic machine translation
where only the sentence with the most probable semantic
match would be of interest, in DeepSQLi, we extend the
neural language model with Beam search [26], in order to
generate more than one semantically related test case based
on the given test case/normal inputs that needs translation.
This helps to generate a much more diverse set of test cases,
and thus providing larger chance to find more vulnerabilities.

• The effectiveness of DeepSQLi is validated on six real-world
Web applications selected from various domains. They are
with various scales and have a variety of characteristics.
The results show that DeepSQLi is better than SQLMap, a
state-of-the-art SQLi testing automation tool, in terms of
the number of vulnerabilities detected and exploitation rate
whilst running up to 6× faster.

Novelty. What make DeepSQLi unique are:

• It is able to translate any normal user inputs into some ma-
licious inputs, which constitute to a test case. Further, it is
capable of translating an existing test cases into another se-
mantically related, but potentially more sophisticated test
case to form a new SQLi attack.

• If the generated test case cannot achieve a successful SQLi at-
tack, it would be fed back to the neural language model as an
input. By doing so, DeepSQLi is continually adapted to create
more sophisticated test cases, thus improving the chance to
find previously unknown and deeply hidden vulnerabilities.

The remaining paper is organised as follows. Section 2 provides
a pragmatic tutorial of neural language model used for SQLi in
this paper. Section 3 delineates the implementation detail of our
proposed DeepSQLi. Section 4 presents and discusses the empirical
results on six real-world Web applications. Section 5 exploits the
threats to validity and related works are overviewed in Section 6.
Section 7 summarises the contributions of this paper and provides
some thoughts on future directions.

2 Source code and experimental data can be accessed at our project reposi-
tory: https://github.com/COLA-Laboratory/issta2020.
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2 DEEP NATURAL LANGUAGE PROCESSING
FOR SQLI

In this section, we elaborate on the concepts and algorithms that un-
derpin DeepSQLi and discuss how they were tailored to the problem
of translating user inputs into test cases.

2.1 Neural Language Model for SQLi
Given a sequence of user inputs Iu = {w1, . . . ,wN } wherewi is the
i-th token, a language model aims to estimate a joint conditional
probability of tokens of Iu . Since a direct calculation of this multi-
dimensional probability is far from trivial, it is usually approximated
by n-gram models [7] as:

P (w1, · · · ,wN ) =

N∏
i=1

P (wi |w1, · · · ,wi−1)

≈

N∏
i=1

P(wi |wi−n+1, · · · ,wi−1)

, (1)

where N is the number of consecutive tokens. According to equa-
tion (1), we can see that the prediction made by the n-gram model is
conditioned on its n − 1 predecessor tokens. However, as discussed
in [12], n-gram models are suffered from a sparsity issue where it
does not work when predicting the first token in a sequence that
has no predecessor.

To mitigate such issue, DeepSQLi makes use of neural language
model as its fundamental building block. Generally speaking, it is a
language model based on neural networks along with a probability
distribution over sequences of tokens. In our context, such proba-
bility distribution indicates the likelihood to which a sequence of
user inputs conform to a SQLi attack. For example, a sequence of
inputs admin’+OR+‘1’=‘1 will have a higher probability since it
is able to conform to a SQLi attack; whereas another sequence of
inputs OR SELECT AND 1, which is semantically invalid from the
injection point of view, will have a lower probability to become a
SQLi attack.

Comparing to the n-gram model, which merely depends on the
probability, the neural language model represents the tokens of an
input sequence in a vectorised format, as known as word embed-
ding which is an integral part in neural language model training.
Empowered by deep neural networks, a neural language model is
more flexibility with predecessor tokens having longer distances
thus is resilient to data sparsity.

In DeepSQLi, we adopt a neural language model for token-level
sequence modeling, given that a token is the most basic element in
SQL syntax. In other words, given a sequence of user inputs Iu , the
neural language model aims to estimate the joint probability of the
inclusive vectorised tokens.

2.2 Multi-head Self-Attention in Neural
Language Model

Attention mechanisms, which allow modelling of dependencies
without regarding to their distance in sequences, have recently
become an integral part of sequence generation tasks [25]. Among
them, self-attention is an attentionmechanism that has the ability to
represent relationship between tokens in a sequence. For example,

we can better understand the token "1" in the sequence "OR 2 > 1"
by answering three questions: "why to compare (i.e., what kind of
attack)", "how to compare" and "who to compare with". Self-attention
have been successfully applied to deal with various NLP tasks, such
as machine translation [32], speech recognition [10] and music
generation [17]. In DeepSQLi, the self-attention is calculated by the
scaled dot-product attention proposed by Vaswani et al [32]:

Q = XWQ ,K = XWK ,V = XWV

A(Q,K,V) = softmax
(
QKT
√
d

)
V
, (2)

where X is the word embedding, i.e., the vector representation, of
the input sequence, Q is a matrix consists of a set of packed queries,
K and V are keys and values matrices whilst d is the dimension of
the key. In particular, Q, K and V are obtained by multiplying X by
three weight matricesWQ ,WK andWV .

In order to learn more diverse representations, we apply a multi-
head self-attention in DeepSQLi given that it has the ability to
obtain more information from the input sequence by concatenating
multiple independent self-attentions. Specifically, a multi-head self-
attention can be formulated as:

MA(QX ,KX ,VX ) = [A1(Q1,K1,V1) ⊗ · · · ⊗Ah (Qh,Kh,Vh )] ·Wa,

(3)
where ⊗ is a concatenation operation,Wa is a weight matrix and h
is the length of parallel attention layers, also known as heads. Since
each head is a unique linear transformation of the input sequence
representation as queries, keys and values, the concatenation ofmul-
tiple independent heads enables the information extraction from
different subspaces thus leading to more diverse representations.

2.3 Encoder-Decoder (Seq2Seq) Model
To train the neural language model, we adopt Seq2Seq—a general
framework consists of an encoder and a decoder—in DeepSQLi. In
particular, Transformer [32] is used to build the Seq2Seq model
in DeepSQLi instead of those traditional recurrent neural network
(RNN) [33] and convolutional neural network (CNN) [18], given its
state-of-the-art performance reported in many Seq2Seq tasks.

Figure 1 shows an illustrative flowchart of the Seq2Seqmodel in
DeepSQLi. The encoder takes a sequence of vector representations
of N tokens, denoted as X = {x1, · · · , xN }, which embed semantic
information of tokens; whilst the input of the decoder is another
sequence of vector representations of N tokens, denoted as Y =
{y1, · · · , yN }. Note that N is not necessary to be equal to N . The
purpose of this Seq2Seq model is to learn a conditional probability
distribution over the output sequence conditioned on the input
sequence, denoted as P(y1, · · · , yN |x1, · · · , xN ). As for the example
shown in Figure 1 where the input sequence is OR 2 > 1 and
the output sequence is || True, the conditional probability is
P (|| True|OR 2 > 1).

More specifically, the encoder in the left hand side of Figure 1
consists of N identical layers, each of which has a multi-head self-
attention mechanism sub-layer and a deep feed-forward neural
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<latexit sha1_base64="zIE7+FXE5neDfS/cfmDuAiMypQk=">AAAB83icdVDLSgMxFM34rPVVdekmWARXZVJHq7uCG8FNBfuAzlAy6Z02NPMgyQhl6G+4caGIW3/GnX9jph1BRQ8EDufcyz05fiK40rb9YS0tr6yurZc2yptb2zu7lb39jopTyaDNYhHLnk8VCB5BW3MtoJdIoKEvoOtPrnK/ew9S8Ti609MEvJCOIh5wRrWRXDekeuwH2c1sAINK1a41ThvknGC7Zs+RE+LUyRkmhVJFBVqDyrs7jFkaQqSZoEr1iZ1oL6NScyZgVnZTBQllEzqCvqERDUF52TzzDB8bZYiDWJoXaTxXv29kNFRqGvpmMs+ofnu5+JfXT3Vw4WU8SlINEVscClKBdYzzAvCQS2BaTA2hTHKTFbMxlZRpU1PZlPD1U/w/6dRrxKk5t061eVnUUUKH6AidIIIaqImuUQu1EUMJekBP6NlKrUfrxXpdjC5Zxc4B+gHr7RNrc5Hr</latexit>

Ve

<latexit sha1_base64="C2RG8gG8KxpS/HIV6jzB6AltdDY=">AAAB83icdVDLSgMxFM3UV62vqks3wSK4KpM6Wt0V3LisYB/QGUomvdOGZh4kGaEM/Q03LhRx68+482/MtCOo6IHA4Zx7uSfHTwRX2rY/rNLK6tr6RnmzsrW9s7tX3T/oqjiVDDosFrHs+1SB4BF0NNcC+okEGvoCev70Ovd79yAVj6M7PUvAC+k44gFnVBvJdUOqJ36QdedDGFZrdr151iQXBNt1e4GcEKdBzjEplBoq0B5W391RzNIQIs0EVWpA7ER7GZWaMwHzipsqSCib0jEMDI1oCMrLFpnn+MQoIxzE0rxI44X6fSOjoVKz0DeTeUb128vFv7xBqoNLL+NRkmqI2PJQkAqsY5wXgEdcAtNiZghlkpusmE2opEybmiqmhK+f4v9Jt1EnTt25dWqtq6KOMjpCx+gUEdRELXSD2qiDGErQA3pCz1ZqPVov1utytGQVO4foB6y3T3xAkfY=</latexit>

P

<latexit sha1_base64="aEhiEJjHyEwHqtj8z567oS75naw=">AAAB8XicdVDLSsNAFL3xWeur6tLNYBFchaRGq7uCG5cV7APbUCbTSTt0MgkzE6GE/oUbF4q49W/c+TdO2ggqemDgcM69zLknSDhT2nE+rKXlldW19dJGeXNre2e3srffVnEqCW2RmMeyG2BFORO0pZnmtJtIiqOA004wucr9zj2VisXiVk8T6kd4JFjICNZGuutHWI+DMGvOBpWqY9dP6+65ixzbmSMnrldzz5BbKFUo0BxU3vvDmKQRFZpwrFTPdRLtZ1hqRjidlfupogkmEzyiPUMFjqjys3niGTo2yhCFsTRPaDRXv29kOFJqGgVmMk+ofnu5+JfXS3V44WdMJKmmgiw+ClOOdIzy89GQSUo0nxqCiWQmKyJjLDHRpqSyKeHrUvQ/adds17O9G6/auCzqKMEhHMEJuFCHBlxDE1pAQMADPMGzpaxH68V6XYwuWcXOAfyA9fYJ92+RGA==</latexit>

Q

<latexit sha1_base64="YkTWFBtFVI9ogLAcZbixiyZqO2c=">AAAB8XicdVDLSsNAFL2pr1pfVZduBovgqiQ1Wt0V3LhswT6wDWUynbRDJ5MwMxFK6F+4caGIW//GnX/jpI2gogcGDufcy5x7/JgzpW37wyqsrK6tbxQ3S1vbO7t75f2DjooSSWibRDySPR8rypmgbc00p71YUhz6nHb96XXmd++pVCwSt3oWUy/EY8ECRrA20t0gxHriB2lrPixX7Gr9rO5cOMiu2gtkxHFrzjlycqUCOZrD8vtgFJEkpEITjpXqO3asvRRLzQin89IgUTTGZIrHtG+owCFVXrpIPEcnRhmhIJLmCY0W6veNFIdKzULfTGYJ1W8vE//y+okOLr2UiTjRVJDlR0HCkY5Qdj4aMUmJ5jNDMJHMZEVkgiUm2pRUMiV8XYr+J51a1XGrbsutNK7yOopwBMdwCg7UoQE30IQ2EBDwAE/wbCnr0XqxXpejBSvfOYQfsN4+Afj0kRk=</latexit>

Figure 1: An illustrative working flowchart of the encoder-decoder (Seq2Seq) model in DeepSQLi.

network (FFN) sub-layer. The first sub-layer is the multi-head self-
attention. As show in Figure 1, the output of the multi-head self-
attention, calculated by equation (3), is denoted as Z1. It is supple-
mented with a residual connection εZ1 to come up with the output
N1 after a layer-normalisation. This process can be formulated as:

N1 = layer-normalisation(Z1 + εZ1 ). (4)

Afterwards, N1 is fed to the second sub-layer, i.e., a FNN, to carry
out a non-linear transformation. Specifically, the basic mechanism
of the FNN is formulated as:

z2 = FFN(n1) = max (0, n1W1 + b1)W2 + b2, (5)

where n1 is a vector of N1. Thereafter, the output of the FNN,
i.e., Z2, will be transformed to two matrices Ke and Ve after being
normalized toN2. It is worth noting thatKe andVe are the output of
the encoder whilst they embed all information of the input sequence
"OR 2 > 1".

As for the decoder shown in the right hand side of Figure 1, it
takes Ke and Ve output from the encoder as a part of inputs for pre-
dicting a sequence of semantically translated vector representation
Y. The decoder is also composed of a stack of N identical layers,
each of which consists of a masked multi-head self-attention, a
multi-head self-attention and a FNN sub-layers. In particular, the
computational process of the multi-head self-attention and the FNN
sub-layers is similar to that of the encoder, except thatKe andVe are
used as the K and V of equation (2) in the multi-head self-attention
sub-layer. As for the masked multi-head self-attention sub-layer, it
is used to avoid looking into tokens after the one under prediction.
For example, the multi-head self-attention masks the second token
"True" when predicting the first one "||".

In principle, the Transformer used to do Seq2Seq allows for
significantly more parallel processing and has been reported as
a new state-of-the-art. Unlike the RNN, which takes tokens in a
sequential manner, the multi-head attention computes the output
of each token independently, without considering the order of
words. Since the SQLi inputs used in DeepSQLi are sequences with
determined semantics and syntax, it may leads to a less effective
modelling of the sequence information without taking any order of
tokens into consideration. To take such information into account,
the Transformer supplements each input embedding with a vector

called positional encoding (PE). Specifically, PE is calculated by sine
and cosine functions with various frequencies:

PEi =

{sin( i

10000 2
de

), · · · , sin( i
10000 2de

de

)}, if i%2 == 0

{cos( i
10000 2

de
, · · · , cos( i

10000 2de
de

)}, if i%2 == 1 , (6)

where de is the dimension of the vector representation, i represents
the index of the token in the sequence. PEi indicates that the sine
variable is added to the even position of the token vector whist the
cosine variable is added to the odd position. Thereafter, the output
token vector xi is updated by supplementing PEi , i.e., pi = xi +PEi .
By doing so, the relative position between different embedding can
be inferred without demanding costs .

3 END-TO-END TESTINGWITH DEEPSQLI
DeepSQLi is designed as a end-to-end tool, covering all stages in the
penetration testing [13]. As shown in Figure 2, the main workflow
of DeepSQLi consists of four steps: training, crawler, test case gen-
eration & diversification and evaluation, each of which is outlined
as follows:
Step 1: Training: This is the first step of DeepSQLi where a neural

language model is trained by the Transformer. Agnostic
to the Web application, the training dataset can either be
summarised from historical testing repository or, as what we
have done in this work, mined from publicly available SQLi
test cases/data. The collected test cases/data would then be
paired, mutated and preprocessed to constitute the training
dataset. We will discuss this in detail in Section 3.1.

Step 2: Crawler: Once the model is trained, DeepSQLi uses a crawler
(e.g., the crawler of the Burp Suite project3) to automatically
parse the Web links of the SUT (as provided by software
engineers). The major purpose of the crawler is to extract
the fields for user inputs in the HTML elements, e.g., <input>
and <textarea>, which are regarded as the injection points
for a SQLi attack. These injection points, along with their
default values, serve as the starting point for the neural
language model to generate SQLi test cases.

3 https://portswigger.net/burp
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Figure 2: The architecture and workflow of DeepSQLi.

Step 3: Test Case Generation & Diversification: The neural language
model of DeepSQLi is able to generate tokens with different
probabilities leading to a test case. To fully exploit such
advantage for exploring a diverse set of alternative test cases,
in the translation phase, we let the neural language model
to generate and explore tokens with the topm probability
instead of merely using only the highest one. This is achieved
by Beam search [26], a heuristic that guides the neural
language model to generatem test cases based on the ranked
probabilities. This will be elaborated in detail in Section 3.2.

Step 4: Evaluation: Based on the test cases generated at Step 3, we
randomly choose one and fed it into the SUT for evaluation.
In particular, to avoid compromising the SUT, it is equipped
with a proxy, i.e., SQL Parser4, before the RDBMS to identify
whether or not a malicious SQL statement can achieve a
successful attack. To improve the chance of detecting dif-
ferent vulnerabilities, DeepSQLi stops exploring a specific
vulnerability once it has been found through a test case.

It is worth noting that DeepSQLi does not discard unsuccessful
test cases which fail to achieve attacks as identified by the proxy.
Instead, they are fed back to the neural language model to serve as
a starting point for a re-translation (i.e., go through Step 3 again).
This comes up with a closed-loop until the test case successfully
injects the SUT or the maximum number of attempts is reached.
By this means, DeepSQLi grants the ability to generate not only
the standard SQLi attacks, but also those more sophisticated ones
which would otherwise be difficult to create.

4 http://www.sqlparser.com.

3.1 Training of Neural Language Model
DeepSQLi is agnostic to the SUT since we train a neural language
model to learn the semantic knowledge of SQLi attack that is inde-
pendent to an actual Web application. Therefore, DeepSQLi, once
being trained sufficiently, can be applied to a wide range of SUT as
the semantic knowledge of SQLi is easily generalisable. The over-
all training procedure is illustrated in Figure 2. In the following
subsections, we further elaborate some key procedures in detail.

3.1.1 Building Training Dataset. In practice, it is possible that the
SUT has accumulated a good amount of test cases from previous
testing runs, which can serve as the training dataset. Otherwise,
since we are only interested to learn the SQL semantics for injec-
tions, the neural language model of DeepSQLi can be trained with
any publicly available test cases for SQLi testing regardless to the
Web applications, as what we have done in this paper.

Since our purpose is to translate and generate a semantically
related test case based on either a normal user inputs or another
test case, the test cases in the training dataset, which work on the
same injection point(s), need to appear in input-output pairs for
training. In particular, an input-output pair (A,B) is valid if any of
the following conditions is met:

• A is a known normal user input and B is a test case. For exam-
ple, https://xxx/id=7 can be pairedwith https://xxx/id
=7 union select database().

• A is a test case whilst B is another one, which is different but
still conform to the same type of attack. For example, A is ’
OR 1=1 -- and B is ’ OR 5<7 -- . It is clear that both of
them lead to a semantically related tautology attack.

• A is a test case whilst B is an extended one based on A,
thereby we can expect that B is more sophisticated but in a
different attack type. For example, A: ’ OR 1=1; -- can be
paired with B: ’ or 1=1; select group_concat(schema_
name) from information_schema. schema" ta; --,
which belongs to a different type of attack, i.e., a piggybacked
queries attack extended from A.

In this work, we manually create input-output test case pairs to
build the training dataset based on publicly available SQLi test cases,
such as those from public repositories, according to the aforemen-
tioned three conditions. More specifically, the training dataset is
built according to the following two steps.

Step 1: We mined the repositories of fuzzing test or brute force tools
from various GitHub projects5, given that they often host
a large amount of test case data in their library and these
data are usually arranged according to the types of attacks
(along with normal user inputs). This makes us easier to con-
stitute input-output pairs according to the aforementioned
conditions. In particular, it is inevitable to devote non-trivial
manual efforts to classifying and arranging some more clut-
tered data.

Step 2: When analyzing the mined dataset, we found it is difficult
to constitute input-output pairs for the disguise attack. For
example, a test case containing ’ OR 1=1 -- may fail to

5 https://tinyurl.com/wh94b8t
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Table 1: Description of five mutation operators used in DeepSQLi to enrich the training dataset.

Operators Explanation Example
Input Output

Predicate
Mutation by using relational predicates without changing the expression’s
logical results. In particular, the relational predicates are {<, >, ≤, ≥,between, in, like}. and 8>= 56 and‘l’in (‘m’,‘y’)

Unicode Mutation from a character to its equivalent Unicode format. # %23

ASCII Mutation from a character to its equivalent ASCII encoding format. a CHAR(97)

Keywords Confusion of the capital and small letters of keywords in a test case. select seLeCt

Blank Replace the blank character in a test case with an equivalent symbol. or 1 or/**/1

inject the SUT due to the existence of the standard input val-
idation. Whereas a successful SQLi attack can be formulated
by simply change ’ OR 1=1 -- to %27%20OR%201=1%20--,
which is semantically the same but in a different encoding
format. This is caused by the rare existence of semantically
similar SQLi attacks based on manipulating synonyms and
encoding formats from those public repositories. To tackle
this issue, five mutation operators, as shown in Table 1, are
developed to further exploit the test cases obtained from Step
1. By doing so, we can expect a semantically similar test case
that finally conforms to a disguise attack. In principle, these
mutation operators are able to enrich the test case samples
in the training dataset.

3.1.2 Preprocessing Training Dataset. After building the training
dataset, we then need to preprocess the data samples by gener-
alisation and word segmentation to eliminate unnecessary noise
in the training data. Notably, unlike classic machine learning ap-
proaches [4] that generalise all the words in a data sample, we
only generalise the user inputs, the table name and column name
to unify tokens "[normal]", "[table]" and "[column]". This is
because other words and characters, including text-, encoding-,
blank characters-, quotes-transforms, are specifically tailored in a
SQLi attack, thereby they should not be generalised. For example,
considering a test case "admin’%20or%203<7;--" in the training
dataset, it is converted into a sequence as "[’[normal]’, ’’’,
’%20’, ’or’, ’%2’, ’3’, ’<’, ’7’, ’;’, ’--’]" after the
generalisation.

3.1.3 Training the Model. In DeepSQLi, the neural language model
is trained under the Transformer architecture. As suggested by
Vaswani et al. [32], a stochastic optimization algorithm called Adam [21],
with the recommended settings of β1 = 0.9, β2 = 0.98 and ϵ = 10−9,
is used as the training algorithm.

To prevent overfitting, a 10-fold cross validation is applied in the
training process with Adam to optimize the setting of some hyper-
parameters, including the number of layers in the encoder and the
decoder, the number of hidden layers and neurons in FNN, as well
as the number of heads used in the self-attention mechanism of the
Transformer. In particular, the following loss function is used in
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Figure 3: An illustrative example of Beam search with the
beam width is 2 and the corpus size is 5, i.e., the possible
SQL tokens to be chosen are "1" , "2" , ">" , "=" and "OR"
.

the training process.

L(Y, P(Y|X)) = − log P
(
y1, . . . , yp |x1, . . . , xs

)
= −

p∑
t=1

log P (yt |y1, . . . , yt−1, x1, . . . , xs )
(7)

The hyper-parameter setting leading to the minimum of the above
loss function is chosen to train the model.

3.2 Test Case Generation & Diversification
Since the goal of the classic machine translation is to identify the
most accurate sentence that matches the semantics, only the tokens
with the highest probabilities in the context is of interest. In con-
trast, the major purpose of the test case generation in DeepSQLi
is to generate as diverse test cases as possible so that more bugs
or vulnerabilities can be identified. In this case, any semantically
related test cases are of equal importance as long as they are likely
to find new vulnerabilities. By this justification, the classic neural
language model, which only outputs the test case having the largest
matching probability, is not suitable for DeepSQLi.
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To make the generated test cases be more diversified, Beam
search [26] is used to extend and guide the neural language model
to generate a set of semantically related test cases. In a nutshell,
instead of only focusing on the most probable tokens, Beam search
selects them most probable tokens at each time step given all pre-
viously selected tokens, wherem is the beam width. Afterwards,
by leveraging the neural language model, it merely carries on the
search from thesem tokens and discard the others. Figure 3 shows
an example when m = 2 and the corpus size is 5. According to
the first token " OR" , 2 sequences OR 1 and OR 2 with the highest
probability are selected from 5 candidate sequences at the first time
step. Then, the 2 sequences with the highest probability from the
10 possible output sequences are selected at each subsequent step
until the last token in the sequence is predicted. From the above
search process, we can also see that Beam search does not only
improve the diversity, but also amplify the exploration of search
space thus improve the accuracy. In DeepSQLi, we set the beam
width as 5, which means that the neural language model creates
5 different test cases for each input. For example, considering the
case when the input is ’ OR 1=1, then DeepSQLi could generate
the following outputs: ’ OR 5<7, ’ || 5<7, ’+OR+1=1, ’ OR 1=1,
and ’ OR 1=1--.

In principle, this diversification procedure enables DeepSQLi to
find more vulnerabilities since the output test cases translated from
a given test case (or normal user inputs) are diversified.

4 EVALUATION
In this section, the effectiveness of DeepSQLi is evaluated by com-
paring with SQLmap6, the state-of-the-art SQLi testing automation
tool [28], on six real-world Web applications. Note that SQLmapwas
not designed with automated crawling, thus it is not directly compa-
rable with DeepSQLi under our experimental setup. To make a fair
comparison and to mitigate the potential bias, we extend SQLmap
with a crawler, i.e., the Burp Suite project used in DeepSQLi.

Our empirical study aims to address the following three research
questions (RQs):

• RQ1: Is DeepSQLi effective for detecting SQLi vulnera-
bilities?

• RQ2:Can DeepSQLi outperform SQLmap for detecting SQLi
vulnerabilities?

• RQ3:Howdoes DeepSQLi performon SUTwith advanced
input validation in contrast to SQLmap?

All experiments were carried out on a desktop with Intel i7-8700
3.20GHz CPU, 32GB memory and 64bit Ubuntu 18.04.2.

4.1 Experiment Setup
4.1.1 Subject SUT. Our experiments were conducted on six SUT7
written in Java and with MySQL as the back-end database system.
All these SUT are real-world commercial Web applications used by
many researchers in this literature, e.g., [16]. In particular, there
are two levels of input validation equipped with these SUT:

• Essential: This level filters the most commonly used key-
words in SQLi attacks, e.g., ‘AND’ and ‘OR’.

6 http://SQLmap.org/.
7More detailed information can be found at http://examples.codecharge.com.

Table 2: Real-world SUT used in our experiments.

SUT LOC Servlets∗ DBIs KV

Employee 5,658 7 (10) 23 25

Classifieds 10,949 6 (14) 34 18

Portal 16,453 3 (28) 67 39

Office Talk 4,543 7 (64) 40 14

Events 7,575 7 (13) 31 26

Checkers 5,421 18 (61) 5 44
∗ The # of accessible Servlets (the total # of Servlets).

• Advanced: This is an enhanced level8 that additionally filters
some special characters, which are rarely used but can still
be part of a SQLi attack, e.g., ‘&&’ and ‘||’.

Table 2 provides a briefing of the SUT considered in our experi-
ments. In particular, these SUT cover a wide spectrum of Web ap-
plications under real-world settings. They are chosen from various
application domains with different scales in terms of the line-of-
code (LOC) and they involve various database interactions (DBIs)9.
Furthermore, the number of Servlets and the number of known
SQLi vulnerabilities (dubbed as KV in Table 2) are set the same as
the existing study [16]. It is worth noting that both the number
of accessible Servlets and their total amount are shown in Table 2
since not all Servlets are directly accessible.

To mitigate any potentially biased conclusion drawn from the
stochastic algorithm, each experiment is repeated 20 times for both
DeepSQLi and SQLmap under every SUT.

4.1.2 Training Dataset. In our experiments, the dataset used to
train DeepSQLi is constituted by SQLi test cases, consisting of a
diverse type of SQLi attacks, collected from various projects in
GitHub. We make the training dataset publicly accessible to ensure
that our results are reproducible10. Afterwards, we preprocess the
training dataset by pairing and mutation according to the steps and
conditions discussed in Section 3.1.1. In particular, the number of
paired SQLi test case instances is 19,220, all of which can be directly
used for training DeepSQLi. After using the mutation operators,
the training dataset is significantly diversified and the number of
training data instances is increased to 56,841.

4.1.3 Quality Metrics. The following three quality metrics are used
in our empirical evaluations.

• Number of vulnerabilities found: We use the number of
SQLi vulnerabilities identified by either DeepSQLi or SQLmap
as a criterion to evaluate their ability for improving the
security of the underlying SUT.

• Number of test cases and exploitation rate (ER): In or-
der to evaluate the ability for utilising computational re-
sources, we keep a record of the total number of test cases
generated by either DeepSQLi or SQLmap, denoted as Ttotal.

8This level is usually switched off, because more advanced security mechanism can
often make the performance of Web application worse off.
9 The number of SQL statements that can access user inputs.
10 https://tinyurl.com/wh94b8t
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Figure 4: Ratio of # of vulnerabilities identified by DeepSQLi
to that of SQLmap.

In addition, we also chase the number of test cases that
successfully lead to SQLi attacks, denoted asTsuccess. There-
after, ER is the ratio of Tsuccess to Ttotal, i.e., TsuccessTtotal .

• CPU wall clock time: In order to evaluate the computa-
tional cost required by either DeepSQLi or SQLmap, we keep
a record of the CPU wall clock time used by them for testing
the underlying SUT.

4.2 The Effectiveness of DeepSQLi

In this section, we firstly examine DeepSQLi on SUT with the es-
sential input validation. Figure 4 presents the ratio of the average
number of vulnerabilities identified by DeepSQLi (over 20 runs) to
that of known vulnerabilities. From this result, we can clearly see
that DeepSQLi is able to identify all known SQLi vulnerabilities for
5 out 6 SUT, except the Events. This might be caused by the crawler
which fails to capture all injection points in Events. In contrast, it is
worth noting that DeepSQLi is able to identify more SQLi vulnera-
bilities than those reported in [14] for Office Talk and Checker. This
is a remarkable result that demonstrates the ability of DeepSQLi for
identifying previously unknown and deeply hidden vulnerabilities
of the underlying black-box SUT.

To further understand why DeepSQLi is effective for revealing
the SQLi vulnerabilities, Table 3 shows the injectable SQL state-
ments and the related test cases generated in our experiments.
Specifically, in Example 1, DeepSQLi is able to learn that the input
test case, which is an unsuccessful SQLi attack, has failed due to a
missing quotation mark. Thereby, it generates another semantically
related test case which did find a vulnerability. In Example 2, we see
more semantically sophisticated amendments though exploiting
the learned semantic knowledge of SQL: the initially failed test case
and 3=4 is translated into another semantically related one, i.e.,
and‘‘9, which failed to achieve an attack again. Subsequently, in
the next round, DeepSQLi then translates it into a more sophisti-
cated and successful test case and%208=9, which eventually leads
to the discovery of a vulnerability. Likewise, for Examples 3 to 5,
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Figure 5: Violin charts of the number of SQLi vulnerabilities
identified by DeepSQLi (black lines) and SQLmap (gray lines)
on six SUT with essential input validation across 20 runs.

the input test cases have been translated into another semantically
related and more sophisticated test cases.

Answer to RQ1: Because of the semantic knowledge learned
from previous SQLi attacks, DeepSQLi has shown its effec-
tiveness in detecting SQLi vulnerabilities. It is worth noting
that DeepSQLi is able to uncover more vulnerabilities that
are deeply hidden and previously unknown in the SUT.

4.3 Performance Comparison Between
DeepSQLi and SQLmap

Under the SUT with the essential input validation, Table 4 shows
the comparison results of the total number of test cases generated
by DeepSQLi and SQLmap (dubbed as #total) versus the amount of
test cases leading to successful attacks (dubbed as #success). From
these results, it is clear that DeepSQLi is able to fully test the SUT
with fewer test cases than SQLmap. In addition, as demonstrated by
the better ER values achieved by DeepSQLi, we can conclude that
DeepSQLi is able to better utilise test resources.

To have an in-depth analysis, Figure 5 uses violin charts to visu-
alise the distribution of the number of SQLi vulnerabilities identified
by DeepSQLi and SQLmap on all six SUT across 20 runs. From this
comparison result, it is clear that DeepSQLi is able to find more
vulnerabilities than SQLmap at all instances. In particular, as shown
in Figure 5, the violin charts of DeepSQLi experienced much less
variance than that of SQLmap. This observation implies that it is ca-
pable of producing more robust results by learning and leveraging
the semantic knowledge embedded in the previous SQLi test cases.

Table 5 shows the comparison results of the CPU wall clock time
required for running DeepSQLi and SQLmap. From this comparison
result, we find that DeepSQLi runs much faster than SQLmap. In
particular, it achieves up to 6× faster running time at the SUT
Portal. By cross referencing with the results shown in Table 4, we
can see that SQLmap generates much more test cases than DeepSQLi.
It is worth noting that more test cases do not indicate any better

293



DeepSQLi: Deep Semantic Learning for Testing SQL Injection ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Table 3: Examples of inputs and outputs of DeepSQLi

Example 1 Input SELECT card_type_id FROM card_types WHERE card_type_name=‘ and+1=(select count(*) from );-- ’;
Output SELECT card_type_id FROM card_types WHERE card_type_name=‘ ’and+1=(select count(*) from ); -- ’;

Example 2

Input SELECT category_id, name, par_category_id FROM categories WHERE category_id= and 3=4 ;
Output SELECT category_id, name, par_category_id FROM categories WHERE category_id= and ‘‘7 ;
Input SELECT category_id, name, par_category_id FROM categories WHERE category_id= and ‘‘9 ;
Output SELECT category_id, name, par_category_id FROM categories WHERE category_id= and%208=9 ;

Example 3 Input SELECT category_id, name, par_category_id FROM categories WHERE category_id= 2;
Output SELECT category_id, name, par_category_id FROM categories WHERE category_id= 2;delete from members;

Example 4 Input SELECT id, level FROM members WHERE member_login =‘’%20||%20‘h ’=‘h ’AND member_password=‘’# ’;
Output SELECT id, level FROM members WHERE member_login =‘’%20Or%20‘h’=‘h ’AND member_password=‘’-- ’;

Example 5 Input
INSERT INTO members (member_login,member_password,name,email,location,work_phone,home_phone)
VALUES ("select database()",""test",""test",""test",""test",""1","1");

Output
INSERT INTO members (member_login,member_password,name,email,location,work_phone,home_phone)
VALUES ("sElEct* database()","test","test","test","test","1","1");

Table 4: Comparison results of the # of total/successful test
cases generated by DeepSQLi and SQLmap, and the ER values.

SUT DeepSQLi SQLmap
#total/#success ER #total/#success ER

Employee 5563/473 8.50% 34851/1534 4.40%
Classifieds 4512/340 7.54% 25954/1046 4.03%
Portal 8657/740 8.55% 63001/2244 3.56%

Office Talk 2998/260 8.67% 9451/462 4.89%
Events 5331/487 9.14% 32136/1440 4.48%
Checkers 13463/1077 8.00% 67919/3352 4.94%

Table 5: Comparison of the CPU wall clock time (in second)
used to run DeepSQLi and SQLmap over all 20 runs.

SUT DeepSQLi SQLmap

Employee 355 1177
Classifieds 236 931
Portal 357 2105

Office Talk 166 384
Events 259 1094
Checkers 519 2228

contribution for revealing SQLi vulnerabilities, because those test
cases might be either unsuccessful or redundant as reflected by
the lower ER values achieved by SQLmap. In addition, generating
a much higher number of (useless) test cases makes SQLmap much
slower than DeepSQLi.

Answer to RQ2: DeepSQLi is able to find significantly more
SQLi vulnerabilities than SQLmap, with a better utilization
of the testing resource as evidenced by the better exploitation
rates. DeepSQLi also runs much faster than SQLmap on up to
6× better.
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Figure 6: Violin charts of the number of SQLi vulnerabilities
identified by DeepSQLi (black lines) and SQLmap (gray lines)
on SUT with advanced input validation across 20 runs.

4.4 Performance Comparison Between
DeepSQLi and SQLmap on SUT with Advanced
Input Validation

The previous subsections have validated the effectiveness and per-
formance of DeepSQLi on SUT with essential input validation. In
this subsection, we switch on the advanced input validation in the
SUT, aiming to assess the performance of DeepSQLi against SQLmap
under more complicated and challenging scenarios.

Figure 6 presents the comparison results for the number of SQLi
vulnerabilities found by DeepSQLi and SQLmap on SUT under ad-
vanced input validation. As can be seen, DeepSQLi finds remarkably
more SQLi vulnerabilities than SQLmap. It is worth noting that there
are a few runs where SQLmap failed to detect any vulnerability at
Employee, Classifieds and Office Talk. In contrast, DeepSQLi shows
consistently better performance for finding considerably more SQLi
vulnerabilities.
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Figure 7: Violin charts of the number of reductions of
SQLi vulnerabilities identified by DeepSQLi (black lines) and
SQLmap (gray lines) on SUT with advanced input validation
across 20 runs.

In order to evaluate the sensitivity of DeepSQLi and SQLmap to
the strength of input validation, we compare the number of vulnera-
bilities found on SUT under advanced input validation with that on
SUT under essential input validation. By cross referencing Figure 4,
we can observe some reductions on the number of vulnerabilities
identified by both tools, as shown in Figure 7. However, in contrast
to SQLmap, it is clear that DeepSQLi is much less affected by the
strengthened input validation in 5 out of 6 SUT, demonstrating its
superior capability of revealing SQLi vulnerabilities in more com-
plicated scenarios. This better result achieved by DeepSQLi can be
attributed to the effective exploitation of the semantic knowledge
learned from previous SQLi test cases.

Answer to RQ3: Under the advanced input validation,
DeepSQLi leads to much better results than that of SQLmap,
which can hardly find any vulnerability at all in a consid-
erable number of runs. In general, DeepSQLi is much less
affected by the Web applications with strengthened input
validation.

5 THREATS TO VALIDITY
As with any empirical study, the biases from the experiments can
affect the conclusion drawn. As a result, we study and conclude
this work with the following threats to validity in mind.

The metrics and evaluation method used is a typical example of
the construct threats, which concernwhether themetrics/evaluation
method can reflect what we intend to measure. In our work, the
metrics studied are widely used in this field of research [6, 30] and
they serves as quality indicator for different aspects of SQLi testing.
To mitigate the randomness introduced by the training, we repeat
20 experiment runs for each tool under a SUT. To thoroughly report
our results without losing information, the distributions about the
number of SQLi vulnerability found, which is the most important
metric, have also been plotted in violin charts.

Internal threats are concerned with the degree of control on the
studies, particularly related to the settings of the deep learning
algorithm. In our work, the hyperparameters of Transformer are
automatically tuned by using Adam and 10-fold cross validation,
which is part of the training. The internal parameters of Adam itself
were configured according to the suggestions from Vaswani et
al. [32]. The crawler and proxy DeepSQLi are also selected based
on their popularity, usefulness and simplicity.

External threats can be linked to the generalisation of our find-
ings. To mitigate such, firstly, we compare DeepSQLi with a state-
of-the-art tool, i.e., SQLmap. This is because SQLmap is the most
cost-effective tool and has been widely used as a baseline bench-
mark [1, 3, 30]. Secondly, we study six real-world SUT that are
widely used as standard benchmarks for SQLi testing research [14–
16]. Despite that all the SUT are based on Java, they come with
different scales, number of vulnerabilities and the characteristics,
thus they are representatives of a wide spectrum of Web applica-
tions. In future work, we aim to evaluate DeepSQLi on other Web
applications developed in different programming languages.

6 RELATEDWORK
In order to detect and prevent SQLi attacks, different approaches
have been proposed over the last decade, including anomalous SQL
query matching, static analysis, dynamic analysis, etc.

Several approaches aim to parse or generate SQLi statements
based on specific SQL syntax. For example, Halfond and Orso [14]
proposed AMNESIA, a combination of dynamic and static analysis
approach. At the static analysis stage, models of the legitimate
queries that applications can generate is automatically built. In the
dynamic analysis phase, AMNESIA uses runtime monitoring to
check whether dynamically generated queries match the model.
Mao et al. [8] presented an intention-oriented detection approach
that converted SQL statement into a deterministic finite automaton
and detect SQL statement to determine if the statement contains an
attack. These aforementioned approaches, unlike DeepSQLi, heavily
rely on fixed syntax or source code to estimate unknown attacks. In
addition, they are not capable of learning the semantic knowledge
from the SQL syntax.

Among other tools, BIOFUZZ[30] and µ4SQLi[2] are black-box
and automated testing tools that bear some similarities to DeepSQLi.
However, they have not made the working source code publicly
available or the accessible code is severely out-of-date, thus we
cannot compare them with DeepSQLi in our experiments. Instead,
here we qualitatively compare them in light with the contributions
of DeepSQLi:

• BIOFUZZ [30] is a search-based tool that generates test cases
using context-free grammars based fitness function. How-
ever, as the fitness function is artificially designed based
solely on prior knowledge, it is difficult to fully capture all
possible semantic knowledge of SQLi attacks. This is what
we seek to overcome with DeepSQLi. Further, the fact that
BIOFUZZ relies on fixed grammars may also restrict its ability
to generate semantically sophisticated test cases.

• µ4SQLi [2] is an automated testing tool that uses mutation
operators to modify the test cases, with a hope of finding
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more SQLi vulnerabilities. However, these mutation oper-
ators are designed with a set of fixed patterns, thus it is
difficult to generate new attacks that have not been captured
in the patterns. In DeepSQLi, we also design a few mutation
operators, but they are solely used to enrich the training
data, which would then be learned by the neural language
model. In this way, DeepSQLi is able to create attacks that
have not been captured by patterns in the training samples.

SQLMap is used as state-of-the-art in the experiments because
it is a popular and actively maintained penetration SQLi testing
tool, which has been extensively used in both academia [1, 3, 30]
and industry [28]. Here we also make a qualitative comparison of
differences between SQLMap and DeepSQLi.

• SQLMap relies on predefined syntax to generate test cases.
Such practice, as discussed in the paper, cannot actively learn
and search for new SQLi attacks, as the effectiveness entirely
depends on the manually crafted rules, which may involve
errors or negligence. On the other hand, DeepSQLi learns
the semantics from SQL statements and test cases. Such a
self-learning process allows it to generalize to previously
unforeseen forms of attacks. Our experiments have revealed
the superiority of DeepSQLi in detecting the SQLi vulnera-
bilities.

• SQLMap generates new test cases from scratch. DeepSQLi,
in contrast, allows intermediately unsuccessful, yet more
malicious test cases to be reused as the inputs to generate
new one. This enables it to build more sophisticated test
cases incrementally and is also one of the reasons that leads
to a faster process of DeepSQLi over SQLMap.

Recently, the combination of machine learning and injection-
based vulnerability prevention has become popular [4][27][27][3][29].
Among others, Kim et al. [20] used internal query trees from the log
to train a SVM to classify whether an input is malicious. Sheykhkan-
loo et al. [27] trained a neural network with vectors which assigned
for attacks to classify SQLi attacks. Appelt et al. [3] presented
ML-Driven, an approach generates test cases with context-free
grammars and train a random forest to detect SQLi vulnerability as
the software runs. Jaroslaw et al. [29] applied neural networks to
detect SQLi attacks. Their purpose is to build a model that learns
the normal input and predicts whether the next input of user is
malicious or not.

Unlike DeepSQLi, none of the work aims to generate SQLi test
cases for conducting end-to-end testing on the Web application.
Moreover, DeepSQLi leverages deep NLP to explicitly learn the
semantic knowledge of the SQL for generating the whole sequence
of SQLi test case. In particular, DeepSQLi translates the normal user
inputs into test cases, which, when fail, would then be re-entered
into DeepSQLi to generate more sophisticated SQLi attacks.

7 CONCLUSION AND FUTUREWORK
SQLi attack is one of the most devastating cyber-attacks, the detec-
tion of which is of high importance. This paper proposes DeepSQLi,
a SQLi vulnerability detection tool that leverages on the semantic
knowledge of SQL to generate test cases. In particular, DeepSQLi
relies on the Transformer to build a neural language model under
the Seq2Seq framework, which can be trained to explicitly learn the

semantic knowledge of SQL statements. By comparing DeepSQLi
with SQLmap on six real-world SUT, the results demonstrate the ef-
fectiveness of DeepSQLi and its remarkable improvement over the
state-of-the-art tool, whilst still being effective on Web applications
with advanced input validation.

In future work, we will extend DeepSQLi with incrementally
updated neural language model by using the generated test cases
as the testing runs. Moreover, expanding DeepSQLi to handle other
vulnerabilities, e.g., Cross-site Scripting, is also within our ongoing
research agenda.

ACKNOWLEDGMENT
Li was supported by UKRI Future Leaders Fellowship (Grant No.
MR/S017062/1).

REFERENCES
[1] Dennis Appelt, Nadia Alshahwan, and Lionel C. Briand. 2013. Assessing the

Impact of Firewalls and Database Proxies on SQL Injection Testing. In FITTEST’13:
Proc. Workshop of the 2013 Future Internet Testing - First International. 32–47.

[2] Dennis Appelt, Cu Duy Nguyen, Lionel C. Briand, and Nadia Alshahwan. 2014.
Automated testing for SQL injection vulnerabilities: an input mutation approach.
In ISSTA’14: Proc. of the 2014 International Symposium on Software Testing and
Analysis. 259–269.

[3] Dennis Appelt, Cu D. Nguyen, Annibale Panichella, and Lionel C. Briand. 2018. A
Machine-Learning-Driven Evolutionary Approach for Testing Web Application
Firewalls. IEEE Trans. Reliability 67, 3 (2018), 733–757.

[4] Davide Ariu, Igino Corona, Roberto Tronci, and Giorgio Giacinto. 2015. Machine
Learning in Security Applications. Trans. MLDM 8, 1 (2015), 3–39.

[5] Ilies Benikhlef, Chenghong Wang, and Sangirov Gulomjon. 2016. Mutation based
SQL injection test cases generation for the web based application vulnerability
testing. In ICENCE’16: Proc. of the 2nd International Conference on Electronics,
Network and Computer Engineering.

[6] Josip Bozic, Bernhard Garn, Dimitris E. Simos, and Franz Wotawa. 2015. Eval-
uation of the IPO-Family algorithms for test case generation in web security
testing. In ICST’15 Workshops: Proc. Workshop of the 2015 Eighth IEEE International
Conference on Software Testing, Verification and Validation. 1–10.

[7] Peter F. Brown, Stephen Della Pietra, Vincent J. Della Pietra, Jennifer C. Lai,
and Robert L. Mercer. 1992. An Estimate of an Upper Bound for the Entropy of
English. Computational Linguistics 18, 1 (1992), 31–40.

[8] Chenyu, Mao, Fan, and Guo. 2016. Defending SQL Injection Attacks based-
on Intention-Oriented Detection. In ICCSE’16: Proc. of the 11th International
Conference on Computer Science & Education. IEEE, 939–944.

[9] Mark Curphey and Rudolph Arawo. 2006. Web application security assessment
tools. IEEE Security & Privacy 4, 4 (2006), 32–41.

[10] Linhao Dong, Shuang Xu, and Bo Xu. [n.d.]. Speech-Transformer: A No-
Recurrence Sequence-to-Sequence Model for Speech Recognition. In ICASSP’18:
Proc. of the 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing.

[11] Rohan Doshi, Noah Apthorpe, and Nick Feamster. 2018. Machine Learning DDoS
Detection for Consumer Internet of Things Devices. In SP Workshop’18: Proc. of
the 2018 IEEE Security and Privacy. 29–35.

[12] David Guthrie, Ben Allison, Wei Liu, Louise Guthrie, and Yorick Wilks. 2006. A
Closer Look at Skip-gram Modelling. In LREC’06: Proc. of the 5th International
Conference on Language Resources and Evaluation. 1222–1225.

[13] Halfond, William GJ, Choudhary, Shauvik Roy, Orso, and Alessandro. 2009. Pen-
etration testing with improved input vector identification. In ICST’09: Proc. of
the 2nd International Conference on Software Testing Verification and Validation.
346–355.

[14] William G. J. Halfond and Alessandro Orso. 2005. AMNESIA: analysis and
monitoring for NEutralizing SQL-injection attacks. In ASE’05: Proc. of the 20th
IEEE/ACM International Conference on Automated Software Engineering. 174–183.

[15] William G. J. Halfond, Alessandro Orso, and Panagiotis Manolios. 2006. Using
positive tainting and syntax-aware evaluation to counter SQL injection attacks.
In SIGSOFT’06: Proc. of the 14th ACM International Symposium on Foundations of
Software Engineering. 175–185.

[16] William G. J. Halfond, Alessandro Orso, and Pete Manolios. 2008. WASP: Pro-
tecting Web Applications Using Positive Tainting and Syntax-Aware Evaluation.
IEEE Trans. Software Eng. 34, 1 (2008), 65–81.

[17] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Ian Simon, Curtis
Hawthorne, Noam Shazeer, Andrew M. Dai, Matthew D. Hoffman, Monica Din-
culescu, and Douglas Eck. 2019. Music Transformer: Generating Music with

296



ISSTA ’20, July 18–22, 2020, Virtual Event, USA Muyang Liu, Ke Li, and Tao Chen

Long-Term Structure. In ICLR’19: Proc. of the 7th International Conference on
Learning Representations.

[18] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014. A Convolutional
Neural Network for Modelling Sentences. In ACL’14: Proc. of the 52nd Association
for Computational Linguistics. 655–665.

[19] Adam Kiezun, Philip J. Guo, Karthick Jayaraman, and Michael D. Ernst. 2009.
Automatic creation of SQL Injection and cross-site scripting attacks. In ICSE’09:
Proc. of the 31st International Conference on Software Engineering. 199–209.

[20] Mi-Yeon Kim and Dong Hoon Lee. 2014. Data-mining based SQL injection attack
detection using internal query trees. Expert Syst. Appl. 41, 11 (2014), 5416–5430.

[21] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR’15: Proc. of the 52nd Association for Computational Linguistics.

[22] Huichen Li, Xiaojun Xu, Chang Liu, Teng Ren, Kun Wu, Xuezhi Cao, Weinan
Zhang, Yong Yu, and Dawn Song. 2018. A Machine Learning Approach to
Prevent Malicious Calls over Telephony Networks. In SP’18: Proc. of the 2018 IEEE
Symposium on Security and Privacy. 53–69.

[23] OferMaor andAmichai Shulman. 2004. SQL injection signatures evasion. Imperva,
Inc., Apr (2004).

[24] Stuart McDonald. 2002. SQL Injection: Modes of attack, defense, and why it
matters. White paper, GovernmentSecurity. org (2002).

[25] Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. 2014.
Recurrent Models of Visual Attention. In NIPS’14: Proc. of the 2014 Neural Infor-
mation Processing Systems. 2204–2212.

[26] Veselin Raychev, Martin T. Vechev, and Eran Yahav. 2014. Code completion with
statistical language models. In PLDI’14: Proc. of the 2014 Programming Language
Design and Implementation. 419–428.

[27] Naghmeh Moradpoor Sheykhkanloo. 2017. A Learning-based Neural Network
Model for the Detection and Classification of SQL Injection Attacks. IJCWT 7, 2
(2017), 16–41.

[28] Sanjib Sinha. 2018. SQL Mapping. In Beginning Ethical Hacking with Kali Linux.
Springer, 221–258.

[29] Jaroslaw Skaruz and Franciszek Seredynski. 2007. Recurrent neural networks
towards detection of SQL attacks. In IPDPS’07: Proc. of the 21th International
Parallel and Distributed Processing Symposium. 1–8.

[30] Julian Thomé, Alessandra Gorla, and Andreas Zeller. 2014. Search-based security
testing of web applications. In SBST’14: Proc. of the 7th International Workshop on
Search-Based Software Testing. 5–14.

[31] Wei Tian, Jufeng Yang, Jing Xu, and Guannan Si. 2012. Attack Model Based
Penetration Test for SQL Injection Vulnerability. In COMPSAC’12: Proc. Workshops
of the 36th Annual IEEE Computer Software and Applications. 589–594.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NIPS’17: Proc. of the 2017 Neural Information Processing Systems.
5998–6008.

[33] Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geof-
frey E. Hinton. 2015. Grammar as a Foreign Language. In NIPS’15: Proc. of the
2015 Neural Information Processing Systems. 2773–2781.

297


	Abstract
	1 Introduction
	2 Deep Natural Language Processing for SQLi
	2.1 Neural Language Model for SQLi
	2.2 Multi-head Self-Attention in Neural Language Model
	2.3 Encoder-Decoder (Seq2Seq) Model

	3 End-to-End Testing with DeepSQLi
	3.1 Training of Neural Language Model
	3.2 Test Case Generation & Diversification

	4 Evaluation
	4.1 Experiment Setup
	4.2 The Effectiveness of DeepSQLi
	4.3 Performance Comparison Between DeepSQLi and SQLmap
	4.4 Performance Comparison Between DeepSQLi and SQLmap on SUT with Advanced Input Validation

	5 Threats to Validity
	6 Related Work
	7 Conclusion and Future Work
	References

