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Abstract—Given the ever-increasing complexity of adaptable
software systems and their commonly hidden internal informa-
tion (e.g., software runs in the public cloud), machine learning
based performance modeling has gained momentum for evaluat-
ing, understanding and predicting software performance, which
facilitates better informed self-adaptations. As performance data
accumulates during the run of the software, updating the
performance models becomes necessary. To this end, there are
two conventional modeling methods: the retrained modeling that
always discard the old model and retrain a new one using all
available data; or the incremental modeling that retains the
existing model and tunes it using one newly arrival data sample.
Generally, literature on machine learning based performance
modeling for adaptable software chooses either of those methods
according to a general belief, but they provide insufficient
evidences or references to justify their choice. This paper is the
first to report on a comprehensive empirical study that examines
both modeling methods under distinct domains of adaptable
software, 5 performance indicators, 8 learning algorithms and
settings, covering a total of 1,360 different conditions. Our
findings challenge the general belief, which is shown to be only
partially correct, and reveal some of the important, statistically
significant factors that are often overlooked in existing work,
providing evidence-based insights on the choice.

Index Terms—Performance modeling, self-adaptive system,
machine learning, software runtime

I. INTRODUCTION

Predicting the performance of adaptable software systems
can serve as the powerful foundation for reasoning in various
tasks, e.g., anomaly detection [1], resource provisioning [2]
and self-adaptation at runtime [3]. The key challenge of this is
to build an effective performance model that takes the relevant
features1 of the adaptable software as inputs (e.g., number of
threads, used cache and utilized memory) and predict a value
of the performance indicator, such as latency, throughput and
reliability.

While different classic approaches (e.g., analytical
model [4][5] and simulation [6]) exist for modeling the
performance of adaptable software, machine learning based
performance modelings have been gaining momentum due to
the following reasons: (i) the ever-increasing complexity of
modern adaptable software made the exploitation of classic

1This should not be confused with the functionality of a software; it merely
refers to the quantifiable properties of the software being measured.

approaches for modeling performance difficult, as they are
often restricted to certain features and scenarios that are
obtained via heavy human analysis. (ii) The effectiveness of
classic approaches is highly depending on their assumptions
about the internal structure of the adaptable software being
modeled, and the environment. However, many modern
environments, such as cloud-based systems, virtualized and
multi-tenant software, intentionally hide such information
to promote ease of use, which further reduce the reliability
of those approaches. In contrast, without heavy human
intervention, machine learning based modeling takes a
black box manner that relies on observing the system’s
actual behaviors under certain conditions, in order to infer a
statistical model for the concerned performance indicator [7].

One fundamental to effective application of machine learn-
ing in performance modeling is the data, which determines the
levels of knowledge that a model can learn and generalize.
However, many real world scenarios do not have sufficient
data, or the available data do not adequately represent what
the adaptable software is likely to behave in changing and
uncertain environments. Therefore, modeling software perfor-
mance at runtime with evolving data stream has been increas-
ingly important [8] [9]. Machine learning based performance
modeling at runtime has the advantage that the model can
be updated using the most up-to-date data samples, which
inherently improves the effectiveness of the model.

For modeling performance at runtime, the problem that a
software engineer would face is: how to update the model
when using a learning algorithm2 under evolving data? Liter-
ature from the Software Engineering and Machine Learning
communities take two predominate modeling methods to
achieve this: (i) either completely retraining the model by
learning a new data sample in conjunction with the historical
ones (i.e., the retrained modeling), or (ii) simply tuning the
existing model using a new data sample as it arrives (i.e., the
incremental modeling). The choice between those two methods
does not change the interpretation of the model, but they make
fundamentally different assumptions about how a model is
learned and hence they lead to different variants of a learning

2A learning algorithm refers to a particular model structure and the related
algorithmic procedure that builds the model.



algorithm [10] [11]. As a result, an inappropriate choice can
have serious impacts to the accuracy and training time of the
model which could violate the requirements. However, existing
papers take either of those modeling methods without pro-
viding sufficient evidence or references to justify the choice.
Instead, a general belief is often implied:

Incremental modeling is chosen for faster train-
ing [12] [13] [14] [8] while the retrained modeling is
chosen when higher accuracy is preferred [15] [16]
[17] [18] [9] [19] [20] [7] [14]. The choice is a trade-
off between accuracy and training time.

In this paper, we address such an important lack of un-
derstanding in machine learning based performance modeling
through comprehensive empirical study on three real-world
adaptable software under various settings, leading to a total of
1,360 different conditions (as explained in Table III). We show
that the general belief is flawed and inaccurate. Particularly,
we answer the following research questions:
• RQ1: Does the retrained version of a given learning algo-

rithm always make more accurate model than its incremen-
tal counterparts when modeling adaptable software?

No it does not, the incremental modeling can achieve
statistically better accuracy under certain learning algo-
rithms, the adaptable software and the fluctuations of the
obtained data, which is clearly contradict to what the
general belief claims.

• RQ2: Does the incremental version of a given learning al-
gorithm constantly leads to faster training than its retrained
counterparts when modeling adaptable software?

Yes it does, as the general belief stated. However, the
gain on training time may be practically trivial.

• RQ3: When choosing modeling methods considering differ-
ent learning algorithms, do the trade-offs between accuracy
and training time for modeling performance of adaptable
software always needed?

Trade-off is indeed required, in which the incremental
modeling could train faster but with worse accuracy.
However, this is not always the case—it is possible
that the incremental modeling achieves the best for both
properties. Therefore, the general belief is inaccurate.

• RQ4: How the modeling methods can be affected by the
runtime fluctuations of the adaptable software, i.e., the
number of concept drifts and the deviations in the data?

The errors of both modeling methods exhibit consider-
ably positive monotonic correlations to the number of
drifts, and non-trivial negative monotonic correlations
to the deviations of data. We did not observe clear
correlations of their training time to the number of
concept drift and data deviations in general. The only
exception is the strong correlation between training time
of incremental modeling and the number of concept drift.

In the following, we present the background, motivation and
prior work in Section II. We then specify our empirical study
methodology in Section III. The results are demonstrated and
analyzed in Section IV, followed by discussions on the key
lessons learned in Section V. Finally, we discuss threats to
validity and conclusions in Section VI and VII, respectively.

II. BACKGROUND, RELATED WORK AND MOTIVATION

A. Learning Performance Model for Adaptable Software

Software performance model refers to a correlation function
that takes the features of interest in adaptable software as in-
puts and outputs the expected performance quality. In general,
those features fall into one of the following categories:
• Environmental features affecting the performance.

These features refer to those that cannot be controlled by the
software itself. which causes dynamics and uncertainties,
e.g., the workload, order of requests, size of jobs.

• Adaptable features affecting the performance. These
features refer to those that can be adjusted, at design time
or runtime, to influence the adaptable software, e.g., cache
mode, used cache size and number of threads.

Given the time-varying environment in which the software
operates, the performance model of software is inherently
temporal and could take the historical data points as input
features, which can be formally defined as:

Q(t+ 1) = f(


c1(t+ 1) c1(t) . . . c1(2)
c2(t+ 1) c2(t) . . . c2(2)

...
...

. . .
...

cn(t+ 1) cn(t) . . . cn(2)

 ,

e1(t) e1(t− 1) . . . e1(1)
e2(t) e2(t− 1) . . . e2(1)

...
...

. . .
...

em(t) em(t− 1) . . . em(1)

)
(1)

where c1(t + 1), . . . , cn(t + 1) are the values of adaptable
features for time point t+1; e1(t), . . . , em(t) are the values of
environment features observed at time point t. Those features
can be either continuous, e.g., CPU, memory and size of thread
pool, or discrete, e.g., cache mode and compression method. f
is the actual function learned by a machine learning algorithm.
Q(t + 1) is the expected performance indicator given the
values of adaptable features up to t+1 and under the values of
environment features up to t.

Since the most recent data points are often more relevant
than the order ones [8] [9], the generic performance model
can be simplified as:

Q(t+ 1) = f(


c1(t+ 1)
c2(t+ 1)

...
cn(t+ 1)

 ,

e1(t)
e2(t)

...
em(t)

) (2)

The performance modeling is often regarded as a regression
problem as the performance indicators are usually continuous
values, e.g., throughput. However, it is not difficult to build
the model as classification, where the output is a discrete
value, e.g., for security levels. In this work, we focus on the
performance indicators that demands regression as they are
arguably the most popular ones in existing work [21][22].



In machine learning terminology, the process of building
this model is called training. The ultimate goal of a learning
algorithm is to minimize the error for the data samples in the
training, while preserving the ability to generalize the concept
learned in the training stage to predict the performance on
given inputs, which may not be seen during training.

B. The Retrained and Incremental Modeling
Modeling the performance of adaptable software via ma-

chine learning often require the model to learn whenever newly
observed data sample becomes available as the software runs.
However, the problem that a software engineer would face
is: how to update the model when using machine learning
under evolving data? According to the literature from both the
Software Engineering and the Machine Learning community,
there are two predominate modeling methods to achieve this:

Retrained modeling: retrained modeling is similar to the
traditional offline learning, where the old model is discarded
and a new model is retrained using whatever data that is
available, i.e., the new data samples and all the historical
ones. The good side of retrained modeling is that it is able
to capture the interrelation between different data samples
given the fact that they are always learned in conjunction with
each others. Henceforth, it is expected to be more accurate
as it has more knowledge about the correlation of data. Note
that it is possible to retrain the model only upon a batch of
samples have been obtained, in which case the size of batch is
customizable. However, different sizes may impose different
impacts on the accuracy of the model and may also be highly
sensitive to different contexts [11]. Therefore, in this work,
we use the extreme case as a representative, where the model
is retrained upon the arrival of one new sample, together with
all the historical data.

Incremental modeling: incremental modeling follows the
online learning paradigm, which is truly incremental in the
sense that instead of replacing the entire model, its internal
structure is tuned using the new data sample. In other words,
it learns each new data sample in isolation as they arrive.
The good side of incremental modeling is the likely small
computation effort. However, the fact that each data sample is
learned individually may ignore some joint correlations that
can only be discovered when data samples are learned in
conjunction with each others, which may affect the accuracy.

Algorithm 1 Retrained MLP
Require: collected data Dset = ∅
1: while new data Dnew arrives do
2: discard the old model
3: initialize a new model M
4: Dset := Dset ∪Dnew

5: for i = 1 to epochmax do
6: for sample d in Dset do
7: predict output on d
8: get the error e
9: get ∆wh (hidden)

10: get ∆wi (input)
11: end for
12: update all weights in M
13: end for
14: end while

Algorithm 2 Incremental
MLP
1: initialize a new model M
2: while a new data sample d arrives

do
3: for i = 1 to epochmax do
4: predict output on d
5: get the error e
6: get ∆wh (hidden)
7: get ∆wi (input)
8: update all weights in M
9: end for

10: end while

In algorithm 1 and 2, we used the three layered Multi-Layer
Perceptron (MLP) [23], trained by back-propagation [24], to

algorithmically illustrate the difference of the two modeling
methods. Here the key distinction between them is the order
in which the weights are updated. In retrained modeling, the
weights are updated once all data samples are presented to the
learning algorithm; subsequently, the updated model is used
in the next iteration, which ends when a fix number of epochs
has been reached. On contrary, in incremental modeling, the
weights are updated w.r.t. each single data sample for a fix
number of epochs. Even if we assume identical number of
data samples for both modeling methods, the different order of
weights updating would create different intermediate model,
which serves as the base for updating weights in the next
iterations, leading to diverse finally trained model. As a result,
deciding on which modeling method to follow is non-trivial
for performance modeling on adaptable software.

C. Prior Retrained Performance Modeling

To build machine learning based performance models under
evolving data stream, a large amount of research has relied on
retrained modeling. Among others, Kundu et al. [15][16] have
relied on Multi-Layer Perceptron (MLP) [10] and Support Vec-
tor Machine (SVM) [25] to model the performance of cloud-
based and service-oriented software. Their models are built in
the retrained manner, where certain amount of historical data
is used to train the MLP model at design time, then at runtime,
such a model is retrained whenever new data sample is
available. Similarly, Siegmund et al. [20], Sieber et al. [17] and
Gerostathopoulos et al. [26] use Linear Regression (LR) [27]
to build the performance model at runtime, but again, the
model is retrained completely instead of being tuned when
significant outliers are detected or as new data is collected.
Another notable effort of retrained modeling based on the
Decision Tree (DT) family (e.g., M5 decision tree [28]), such
as FUSION [18] and Guo et al. [19], where the performance
model is discarded and rebuilt using all the available data when
the adaptable software collects new information. A general
framework for modeling performance of adaptable software
using the retrained method, which is agnostic to the learning
algorithm, were proposed by Ghahremani et al. [29].

Didona et al. [7] propose to model performance through
a hybrid of analytical and machine learning based modeling
where the model is still updated in a retrained manner, but such
a training is guided or combined with domain knowledge. To
more accurately model the performance of adaptable software
in the cloud, Chen and Bahsoon [9][30] also build an ensemble
of machine learning models using retrained modeling method.

D. Prior Incremental Performance Modeling

The other direction of effort on performance modeling
assumes truly incremental modeling. For example, incremental
modeling has been used in relatively simpler learning algo-
rithms, e.g., linear regression (e.g., in [12][14]) and ARMA
(e.g., in [13]), when modeling performance under changing
environment of an adaptable software. The linear nature of
those models make incremental modeling much more straight-
forward and can be tuned using Recursive Least Squares (RLS)



TABLE I: The Selected Performance Modeling Studies

Ref. Method Algorithm Why Chose the Modeling Method?
[15] Retrained MLP,SVM Great accuracy; acceptable overhead.
[16] Retrained MLP Improved accuracy.
[19] Retrained DT High accuracy.
[20] Retrained LR High accuracy.
[12] Incremental LR Negligible training time.
[8] Incremental MLP Small overhead.
[17] Retrained LR High accuracy to handle outliers.
[18] Retrained DT High accuracy.
[9] Retrained LR,DT,MLP Great accuracy; acceptable overhead.
[7] Retrained DT,MLP High accuracy to extract information.
[14] Incremental LR Fast model updates.
[30] Retrained LR,MLP Great accuracy; acceptable overhead.
[13] Incremental ARMA Negligible training time.

filter [31]. Complex models can also be tuned in an incre-
mental manner: Lama et al. [8] model software performance
via a fuzzy based MLP, which is tuned incrementally using
back-propagation and RLS filter when new data is available.
Recently, Jamshidi et al. [32] apply transfer learning to model
the performance of adaptable software, where the transferred
model is also incremental, such that it is continually updated
as new samples arrives.

E. Prior Comparative Study

In the machine learning community, Read et al.’s study [11]
is the most close work that aims to understand the differences
between retrained and incremental modeling when handling
evolving data, which has similar motivation to ours. However,
their work is fundamentally different to this paper in the fol-
lowing aspects: (i) Read et al. focus on classification problems
only where our work emphasizes on regression problems.
(ii) Read et al. consider learning algorithms that can only
be used in a retrained manner as well as those that can be
applicable only in an incremental way. In contrast, our work
compares an identical learning algorithm under both modeling
methods, which eliminates the bias introduced by the nature
of different learning algorithms. (iii) We particularly focus on
data collected from running adaptable software while Read
et al. use data set from other domains, which are irrelevant
to software performance modeling. This is important as the
data collected adaptable software can exhibit patterns that are
difficult to observe in data sets from the other domains [9].

F. Why A Modeling Method was Chosen?

The discussed related work above is the result of a sys-
tematic literature review conducted in 2017, in which we
searched on Google Scholar using the keywords of “Perfor-
mance Modeling” AND “Machine Learning” AND (“Software
Engineering” OR “Self-Adaptive System”) AND (“Incremen-
tal Model” OR “Retrained Model”). We did not only cover
papers in the software engineering domain, but also work
from the system engineering community. We then applied the
exclusion criteria, e.g., published in the last decade, explicitly
or implicitly state which modeling method was chosen. As
a result, we have identified 13 most notable papers, which,
together with why a modeling method was chosen, are listed in
Table I. The key observation from the reviewed papers is that,
regardless if incremental or retrained modeling is followed, the
choice of modeling method comes with insufficient evidence

TABLE II: The Studied Learning Algorithms

Learning Algorithm Characteristics Setting
Linear Regression (LR) [27] linear, interpretable α = 0.1, λ = 1
Decision Tree (DT) [33] nonlinear, interpretable
Support Vector Machine
(SVM) [25]

nonlinear with kernel, convex,
black-box

α = 0.01, λ =
10−5

Multi-Layer Perceptron
(MLP) [10]

nonlinear, black-box Sigmoid, α =
0.6, epoch =
5000

Bagging-LR (Ba-LR) [34] linear, weighted ensemble n=5
Bagging-DT (Ba-DT) [34] nonlinear, weighted ensemble n = 5
Boosting-LR (Bo-LR) [35] linear, sequential ensemble n = 5
Boosting-DT (Bo-DT) [35] nonlinear, sequential ensemble n = 5

or references of justification. Often, the choices are derived
according to the general belief presented in Section I.

The results of the review have raised serious concerns that
question the validity of the general belief, which in turn,
motivates this work to provide insights for choosing modeling
method for adaptable software under evolving data stream,
especially at runtime.

III. THE EMPIRICAL STUDY METHODOLOGY

A. The Machine Learning Algorithms Studied

A list of 8 widely-used machine learning algorithms, their
characteristics and settings3 have been shown in Table II. For
each algorithm, we study their incremental version and the
retrained counterparts. We have omitted those lazy learning
algorithms (e.g., kNN), which do not differ in the sense of
retrained and incremental modeling, as they do not build model
in the training stage but delay the learning during prediction.

As shown in Table II, to enrich the generality of our
study, we have considered different learning algorithms with
diverse characteristics. It is worth noting that each learning
algorithm is designed for general propose regardless if it is
used as incremental or retrained modeling. However, to fit
with the context of different modeling methods, they can be
tailored during the training process as shown in Section II-B.
Further, the studied machine learning algorithms contain 4
single learners and 4 ensembles, in which more than one base
learners are used to learn the correlations and their outputs are
combined. We have considered two most common ensembles,
namely Bagging [34] and Boosting [35]. In this way, our
empirical study covers not only the single learning algorithm,
but also the algorithms in which more than one learners
are combined. We have used the implementation of those
algorithms in the WEKA [36] and MOA [37] frameworks.

B. The Subject Adaptable Software Systems

We conducted an empirical study on three running adaptable
software from different domains, each of which represents
a common category of real-world software, i.e., web-based,
service-oriented and cloud-based. They are explained as below
and their details are summarized in Table III:

S-RUBiS: RUBiS [39] is a well-known software bench-
mark (with 26 different services). As shown in Figure 1, to
realize an adaptable complex software system, we extended

3The settings of these parameters were identified recurring to the standard
methodology used to tune a learning algorithms. The chosen ones appear to
be adequate overall for all the adaptable software studied.



TABLE III: Subject Adaptable Software Systems and Their Characteristics

S-RUBiS ASOS C-VARD
# Adaptable Features 10, e.g., the number of threads, cache mode, if enable

compression.
10, the number of parallel and redundant instances
of a service for each abstract service. (1 to 10)

2, the utilized CPU
and used memory.

# Environmental Features 26, number of requests for each services, e.g., BrowseCate-
gory, Browse.

20, the status of each end-user, i.e., indicating
whether s/he is requesting the workflow or not.

1, the hour of a day.

# Performance Indicators 2, response time and energy consumptions. 2, reliability (the percentage of end-users who
are served within a time limit) and the mean
throughput of all end-users.

1, latency.

# Cases 72, a combination of 6 workload traces (FIFA98 [38], stable,
as in Figure 2a), 2 workload patterns (read-only and read-
write) and 6 workload frequencies (amplified by a factor).

10, different matrices of randomly extracted ser-
vices and end-users. (as in Figure 2b)

6, instance types in
Figure 2c

The 1,360 conditions are derived from: 8 learning algorithms × (2 indicators × (72 cases + 10 cases) +1 indicator × 6 cases).

RUBiS, denoted as S-RUBiS, using various adaptable real-
world software, e.g., Tomcat [40]. The feature inputs and the
performance indicators are discussed in Table III. We run the
software on a dedicated server, and we used Xen as the hy-
pervisor to create a virtualized environment. While S-RUBiS
is running in a configurable guest Virtual Machine (VM),
we exploited a multi-objective optimization framework [3]
as the adaptation engine in root domain to adapt RUBiS at
runtime. To create a realistic workload within the capacity
of our testbed, we vary the number of clients according to
the different workload traces, as shown in Figure 2a. Those
workload traces can generate up to 600 parallel requests, which
are sufficiently significant for our experiments. The workload
is produced by another machine using the client emulator
provided in the original RUBiS. Notably, through different
workload patterns, traces and frequencies, we obtained a total
of 72 cases for each pair of performance indicator and learning
algorithm on S-RUBiS. For each case, the validation data is
collected under a sampling interval of 120s for 102 intervals.
By the end of each interval, an adaptation is performed.

S-RUBiS emulates the adaptable software systems with
diverse runtime behaviors, in which the data is likely to be
highly fluctuated, imposing extra difficulty to the learning.

ASOS: Adaptive Service-Oriented Software
(ASOS) [41][42] is an adaptable software composed
from a set of services. As shown in Figure 1, we have
considered a workflow of 10 abstract services, each of
which can be composed by different numbers of parallel and
redundant instances of a pre-located concrete service. The
feature inputs and the quality indicator of performance are
discussed in Table III. Since it is difficult to emulate the
actual running software system over the Internet, in this work,
we configured the performance of services and the actual
end-users by randomly extracting the data from the realistic
WS-DREAM [43], which is a readily available dataset that
contains a performance matrix for 4,500 services and 142
end-users form different countries. ASOS runs on the same
physical machine as S-RUBiS. As the end-users exhibits
randomized changes, i.e., whether an end-user requests ASOS
or not at a given time point is completely random, we
adapted the ASOS following the Monte Carlo method, and
collected the data samples. Notably, through using different
services-users matrices (as in Figure 2b), we obtained a total
of 10 cases for ASOS. In this way, the associated service
of each abstract service and the users varies across different

RUBiS

Adaptation Engine

Ehcache

Tomcat

MySQL

Xen

......

x parallel instances of 
service 1

Abstract Service 1

y parallel instances of 
service 2

Abstract Service 2

z parallel instances of 
service 10

Abstract Service 10

...

VARD

VM

Neighboring
 software

VM

Neighboring
 software

VM

Physical Machine in EC2

                   Job Gateway

S-RUBiS ASOS C-VARD

...

Fig. 1: Architecture of the subject adaptable software systems.

cases. For each case, the validation data is collected under a
sampling interval of 10s for the total of 64 intervals. By the
end of each interval, an adaptation is performed.

This adaptable software represents those that have different
but stable runtime behaviors, where the data is likely to follow
certain patterns with little emergent fluctuations.

C-VARD: C-VARD refers to the cloud-based VARD ap-
plication [44], which is a corpus linguistics analysis software.
We run C-VARD on Amazon EC2 using different VM instance
types and a job of 2MB texts were submitted periodically, as
shown in Figure 1. The feature inputs and the quality indicator
of performance are discussed in Table III. Given the widely
acknowledged issue of quality/performance interference in the
cloud, running the same software (under the same environment
conditions) can have a variety of performance depending the
time of a day and day of a week, as the non-observable
neighboring software and VMs running in the public cloud
can influence the performance of C-VARD [9]. Therefore, we
run C-VARD at different time on a day for one week on the
same workload, and collected the samples. Those time slots of
a day serve as the environmental feature in this study and they
have been proven to be the cause of performance variance [45].
Through different VM instance types, as shown in Figure 2c,
we obtained a total of 6 cases for C-VARD. For each case,
the validation data is collected under a sampling interval of
600s for the total of 900 intervals. Since the cases determine
all the possible adaptations and they are setup at design time,
not further adaptation is needed at runtime.

This is a subject adaptable software that runs under an
uncontrollable public domain, i.e., Amazon EC2. It serves as
example of the software systems involves hidden and non-
observable features that can influence their behaviors, i.e.,
through the VM interference [9].
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C. Analysis of the Fluctuation in Subject Software Systems

To analyze the fluctuation of the adaptable software, we use
the following criteria to represents the changes at runtime:

Concept Drift: the concept drift [46] refers to the statistical
properties of the target performance indicator, which the model
is trying to predict, change over time in unforeseen ways. In
general, for real-world software and data as what we studied
in this work, there is no exact understanding about when the
concept drift occurs. Therefore, we leverage ADWIN [47], a
well-known drift detector, to measure the number of drifts in
the data stream. Since we can only count the number of drifts
not the extents of drifts, we apply another metric below.

Relative Standard Deviations (RSD): RSD measures the
extents of change in the data stream by calculating the ratio
between standard deviations and mean. This includes the data
about the performance indicators and the related features of
the software that can be used to train a model. The normalized
nature of RSD allows us to report the mean value of the RSD,
denoted as mRSD, for the features and performance indicators
under all cases. A larger mRSD often imply that the overall
extent of concept drifts is also more significant.

In Figure 3, we report on the average percentage of detected
drifts over all the intervals and the mRSD for predicting
each performance indicator for all cases. As we can see, the
percentage of drifts on S-RUBiS and ASOS do not differ
much, while the C-VARD exhibits smaller percentage. When
we comparing the mRSD, we can observe that the S-RUBiS
is clearly more fluctuated than the ASOS, which implies that
although they have similar percentage of drifts, the extents
of changes in the S-RUBiS is much greater than that of the
ASOS. On both S-RUBiS and ASOS, it is obvious that one
performance indicator is more fluctuated than another: e.g.,
response time is more fluctuated than energy consumption
while the reliability is more fluctuated than throughput. As for
C-VARD, even through it tends to be the most stable adaptable
software (and thus easier to be modeled accurately), it involves
hidden information that cannot be exploited in the modeling,
which can negatively affect the model accuracy.

D. The Comparison Procedure and Metrics

To ensure generality, we investigated a wide range of
combinations on scenarios and cases, which are defined as:

— Scenario: A scenario refers to each pair of learning algo-
rithm and performance indicator of a software, e.g., using
LR to predict the throughput of ASOS.

0 5 10 15

S-RUBiS: Response Time

S-RUBiS: Energy Consumption

ASOS: Reliability

ASOS: Throughput

C-VARD: Latency

10.8

11.3

10.8

10.8

6

Drifts (%)
0 1 2 3

S-RUBiS: Response Time

S-RUBiS: Energy Consumption

ASOS: Reliability

ASOS: Throughput

C-VARD: Latency

2.23

2.08

0.96

0.83

0.35

mRSD

Fig. 3: The fluctuations of the subject adaptable software’s
performance indicators in terms of the percentage of concept
drifts and the mean RSD.

— Case: A case denotes a specific environmental dynamic and
setups in a given scenario, e.g., for S-RUBiS, read-only
pattern for FIFA98 workload trace with a heavy frequency.
Under each scenario-case pair, the models following both

retrained and incremental modelings were pre-trained using
the samples collected under random environment changes and
cases. Next, we apply the pre-trained models to learn and
predict the performance over all the runtime intervals, as
specified in Section III-B. To mitigate the bias, we repeat 10
runs for each case under a scenario. Since we are interested in
modeling at runtime, three metrics are particularly important:

Accuracy (Error): We measure the accuracy of the model as
the adaptable software runs and as the model evolves4. At each
time point t, a model is firstly updated by the data samples up
to t-1 (t-2 for environment features). Then in the validation
phase, the model takes the adaptable features at t and the
environment features at t-1 to predict the performance at t,
which is then compared with the ground truth at t. Given a
scenario, we adopt Mean Absolute Error (MAE) to show the
accuracy over all the intervals and repeated runs of a case,
as it can additionally reflect the practicality of the error in
the original scale. Suppose yk,t and ŷk,t are the predicted and
actual performance of the kth run at time t respectively; the
MAE over n intervals and m repeated runs is:

MAE =
1

m× n
×

m∑
k=1

n∑
t=1

|yk,t − ŷk,t| (3)

Training Time: We collected the time taken for training,
and analyzed the Mean Training Time (MTT) over all the
time intervals and repeated runs of a case.

Robustness: By analyzing the variance of the accuracy
and training time, we aim to understand the robustness of

4Unlike classic validation in machine learning, the validation with changing
model is done against each new data sample in the data stream [11].
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Fig. 4: The boxplot of mean absolute error. The scenarios for which the incremental modeling has better average on all cases
are highlighted in gray. The ? means there is a statistically significant difference of the accuracy between incremental and
retrained modeling, i.e., p < .05. T=trivial effect size; S=small effect size; M=medium effect size; L=large effect size.

each modeling method on both metrics (i.e., the smaller the
variation, the better the robustness), when learning under
abnormal and noisy data samples of the adaptable software.

Given that different features and performance have distinct
scales, during training, it is necessary to normalize them into
the same range using the upper and lower bounds. This can
ensure good numeric stability, which in turn, significantly
improves the prediction accuracy [30] [9]. Practically, the fact
that the upper and lower bounds are unknown in prior implies
that all data samples needs to be stored, and rescaled when the
upper and lower bounds change. This has no implication on
the retrained modeling method as the old model is discarded
anyway, but it can affect the incremental modeling since
the existing model becomes invalid once the samples are
rescaled. Therefore in this work, whenever the data samples
are rescaled, we recreate the incremental models by feeding the
data sample one by one. However, for most of the scenarios,
it is expected that the frequency of rescaling is low. Indeed,
we only observed trivial amounts of rescaling in our study.

IV. RESULTS

We now discuss the results for all the research questions5:

A. RQ1: Accuracy

To answer RQ1, we study the model error of incremen-
tal and retrained modeling on each scenario, i.e., a given
performance attribute and a learning algorithm. The reported
results are extracted from the data set in which each data
point represents the MAE of a case (over all intervals and
10 repeated runs) under a given scenario. We performed
Wilcoxon Signed-Rank test for all comparisons of the results
and repeated runs, as our data does not follow Gaussian
distributions. We set α =.05, which means that, if the test
produces a p value that is smaller than .05, then we can
reject the null hypothesis H0, which states that the given two

5All experiment data and results can be accessed at:
https://github.com/taochen/all-versus-one

modeling methods cannot be distinguished statistically. We
follow [48] to measure and classify the effect size.

As shown in Figure 4 top row, for the single learning
algorithms, retrained and incremental modeling yield very
competitive, but differentiable accuracy. Notably, the incre-
mental one being slightly better as it outperforms the retrained
modeling for 11 out of the 20 scenarios, and there are 8
improvements tends to be statistically significant with non-
trivial effect sizes. The retrained modeling, on the other hand,
dominates the incremental one for 9 scenarios, 8 of which are
statistically significant with non-trivial effect sizes. However,
even with the same learning algorithm, the better one can vary
depending on the scenario, e.g., for LR, incremental modeling
is better for 3 out of the 5 performance indicators while
the retrained one is better for the rest. Taking a deeper look
w.r.t. the learning algorithms, we found that the retrained and
incremental modeling have similar effect on LR and DT, but
they lead to considerably diverse result while working on SVM
and MLP: overall, the retrained modeling is clearly better
in accuracy on SVM while the incremental one yields much
better results on MLP. For the ensembles in Figure 4 bottom,
the accuracy between retrained and incremental modeling are
clear: the former outperforms the latter on Boosting while
it is the opposed on Bagging, where most comparisons are
statistically significant with non-trivial effect sizes.

The variance of accuracy between incremental and retrained
modeling has been similar for most of the learning algorithms,
except for SVM and the two Boosting ensembles (Bo-RL
and Bo-DT): the incremental SVM, Bo-RL and Bo-DT have
generally larger variance than their retrained counterparts. This
implies that the retrained modeling is more robust overall.

The two modeling methods have also leaded to interesting
discovery with regards to the three different adaptable software
systems under single learners: for highly fluctuated cases
such as S-RUBiS, incremental modeling tends to offer better
accuracy because it is more sensitive to the changes in data.
For relatively stable cases of ASOS, the benefit of retrained
modeling is more obvious since it is more important to learn
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Fig. 5: The boxplot of mean training time. The scenarios for which the incremental modeling has better average on all cases
are highlighted in gray. The ? means there is a statistically significant difference of the training time between incremental and
retrained modeling, i.e., p < .05. T=trivial effect size; S=small effect size; M=medium effect size; L=large effect size.

the correlation between data samples in such case. As for
C-VARD where there are hidden features, both modeling
methods perform similarly, but the incremental one suffers
larger variance when using SVM. However, we cannot rule
out the implication of the actual performance indicator: as
mentioned in Section III-C that the response time is more
sensitive to runtime changes than the energy consumption
on S-RUBiS while the reliability is more fluctuated than the
throughput on ASOS. This is reflected in Figure 4, where
the incremental modeling is generally more accurate than the
retrained one for more fluctuated performance indicator.

For RQ1, we obtained the following findings:
Finding 1: The retrained version of a given learning al-
gorithm does not always lead to higher accuracy than its
incremental counterpart. In fact, the winner on accuracy can
be considerably affected by the actual learning algorithm,
i.e., incremental modeling is better with MLP while the
retrained one is better with SVM, and the characteristics of
subject adaptable software, i.e., the incremental modeling
is more accurate for highly fluctuated adaptable software
while the retrained one is better for stable software.
Finding 2: Overall, the retrained modeling tends to be more
robust accuracy than that of the incremental modeling. This
would affect the choice for adaptable software where the
stability is more important than having greater accuracy.
Finding 3: For ensemble learning algorithms, the incremen-
tal modeling has consistently better accuracy on Bagging
while the retrained one shows less error on Boosting.

B. RQ2: Training Time

To answer RQ2, we investigate the training time of incre-
mental and retrained modeling on the scenarios and cases,
similar to the previous section. We used the same statistical test
and measure of effect size as mentioned before. As shown in
Figure 5, for all scenarios and cases, the incremental modeling
poses much less training time than the retrained modeling (in-
cluding rescaling). The differences are statistically significant
and with large effect sizes, even for simple learning algorithms
like LR. For different learning algorithms, the reduction ranges

from one fold (e.g., for MLP) up to two order of magnitude
(e.g., for SVM). The reduction is also significant for ensemble
learners: up to three order of magnitude for Ba-DT.

In addition, the training time of retrained modeling vary
depending on the subject adaptable software while the in-
cremental one is more robust. For example, the incremental
DT reveals limited variance while the retrained DT is more
variable, and the deviation is higher on the highly fluctuated
S-RUBiS. Yet, we did not observe obvious distinctions for dif-
ferent performance indicators on the same adaptable software.

However, although the incremental modeling has statisti-
cally shorter training time than the retrained one, it is not
always practically meaningful: we see that for most of the
learning algorithms, the differences are as of milliseconds,
which may be negligible for non-critical systems. For MLP,
we observed statistically and practically meaningful advantage
of the incremental modeling on training time as of seconds.

For RQ2, we have the following findings:

Finding 4: Although the incremental modeling has sta-
tistically shorter training time than that of the retrained
one (from 15% to three order of magnitude), the practical
improvement may be trivial depending on the learning
algorithms, e.g., for MLP, this can be practically important
but may be negligible for other learning algorithms.
Finding 5: Training time of incremental modeling is more
robust while that of the retrained one varies depending on
the subject adaptable software: more stable software system
can lead to robust training time while fluctuated ones can
impose varied training time. This would affect the choice for
adaptable software where any single spike of high training
time can cause serious consequence.

C. RQ3: Trade-off Analysis

Next, to answer RQ3, we conduct trade-off analysis be-
tween accuracy and training time for both modeling methods.
As shown in Figure 6, each point represents the average
value of MAE and MTT for a learning algorithm (using either
incremental or retrained modeling) under all the cases, when
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Fig. 6: The trade-off between accuracy and training time.

predicting a particular performance indicator. We show only
the Pareto-optimal points as the others are dominated anyway.

Clearly, for 3 out of 5 performance indicators, the Pareto
front contains only the incremental modeling as the non-
dominated points, suggesting that it is better in terms of both
accuracy and training time. In addition, we found that even
for the same learning algorithm, e.g., DT, the incremental and
retrained modeling can yield different positions on the trade-
off surface. When considering the subject adaptable software
of different characteristics, we observe that the retrained
modelings tend to offer greater accuracy when the performance
indicator of an adaptable software is less fluctuated, e.g., the
energy consumption and throughput. As a result, the Pareto
fronts for modeling energy consumption and throughput con-
tain both modeling methods, implying that when considering
all the learning algorithms studied, the incremental modeling
could exhibit shorter training time but worse accuracy while
the retrained modeling tends to impose longer training time
but lead to better accuracy. This arises a trade-off between
accuracy and training time when deciding whether incremental
modeling or the retrained one is more suitable.

For RQ3, we obtained the following findings:
Finding 6: With all the learning algorithms studied, the
incremental modeling yields better accuracy and training
time for 3 out of the 5 performance indicators considered.
For the remaining two indicators, there is a trade-off when
considering all the learning algorithms studied: the incre-
mental modeling could exhibit shorter training time but
worse accuracy. Conversely, the retrained modeling tends
to impose longer training time but lead to better accuracy.
This means that it is possible for the incremental modeling
to achieve the best on both accuracy and training time.
Finding 7: Even for the same learning algorithm, the
decision of using incremental or retrained modeling can be
a trade-off, see for example the DT on throughput.

D. RQ4: Correlations to Runtime Fluctuations

To analyze the correlations of accuracy and training time to
the number of detected drifts and mRSD, we exploit Spearman
correlation rs. Specifically, rs ranges from -1 to 1 where
−1 < rs < 0 means there is a negative monotonic correlation
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Fig. 7: The correlations of accuracy and training time to the
runtime fluctuations.

while 0 < rs < 1 implies that there is a positive and
monotonic correlation; the greater the absolute value of rs,
the stronger the correlation. rs = 0 suggests that the two
random variables have no monotonic correlation. We follow
the guidance provided by [49] to measure the meaningfulness
of rs and we used the Fisher transformation to determine
whether the rs is statistically different from 0 under α = .05.

Figure 7 report the correlations of accuracy and training
time to the runtime fluctuations (i.e., number of drift and
mRSD), together with the related rs and its statistical sig-
nificance (p value), for both the incremental and retrained
modeling. Each point represents the normalized average value
of the MAE (or MTT) for all cases and scenarios. To simplify
the exposition, those points that have the same number of drifts
(or mRSD) are merged and shown using their mean values.

As we can see from Figure 7 top, the error of incremen-
tal and retrained modeling exhibit at least moderate (strong
for incremental modeling) positive monotonic correlation to
the number of drifts, leading to rs value of 0.66 and 0.45
respectively. The correlations are statistically significant as
p < .05. This result suggests that the more number of drifts
present in the data, the more likely to negatively affect the
model accuracy on both modeling methods. In particular, the
incremental modeling is more sensitive to the number of
drifts, meaning that, as the number of drifts increases, its
accuracy degrades quicker than that of the retrained one. As
for mRSD, surprisingly, the errors of both incremental and
retrained modeling posses similar pattern: they both negatively
correlated with the mRSD, meaning the larger the extents
of deviations in the data, the better the accuracy. Although
the incremental modeling has merely a moderate correlation
(rs = −0.51) and the retrained one has a weak correlation
(rs = −0.36), the rs values can be statistically distinguished
from rs = 0. They are weaker than the correlations between
accuracy and the number of drifts, though. Relatively, the
incremental modeling improves its accuracy quicker as the
mRSD becomes larger. This explains why the incremental
modeling tends to be more accurate than the retrained one
on S-RUBiS, but worse on ASOS: because the mRSD of S-
RUBiS is higher than that of ASOS; while they have similar



percentage of drifts.
Next, in Figure 7 bottom, we noted that the training time

of incremental modeling has a remarkably strong negative
correlation (rs = −0.80) to the number of drifts which is
statistically significant, implying that the more concept drifts,
the less the training time. In other cases, we observed negative
correlations, but they are rather weak and it is not significant
statistically. As for mRSD, we discovered no noticeable cor-
relation of training time to the mRSD, meaning that they are
likely to change arbitrarily for both modeling methods.

For RQ4, we obtained the following findings:

Finding 8: For both the incremental and retrained mod-
eling, their errors exhibit considerably positive monotonic
correlations to the number of drifts, and non-trivial negative
monotonic correlations to the deviations (mRSD) of data.
Relatively, the accuracy of incremental modeling worse off
faster when the number of drifts increase; and improve
quicker when the mRSD becomes larger.
Finding 9: For the incremental modeling, its training time
has strong negative monotonic correlations to the number
of drifts while the correlation between the training time of
retrained modeling and the number of drifts is arbitrary.
There is also no clear relationship between the training time
of both modeling methods and the deviations (mRSD) of
data, or such a relationship is rather arbitrary.

V. LESSONS LEARNED

Lesson 1: The original belief has flaws and is inaccu-
rate. Findings 1 - 3 are clear contradictions to the general
belief when a learning algorithm is considered, such that
the retrained modeling do not always lead to better accuracy
than its incremental counterpart. Our findings have revealed
some patterns when choosing the method, for example, the
incremental modeling is more accurate for highly fluctuated
adaptable software while the retrained one is better for stable
software. The retrained modeling also exhibits more robust
accuracy overall. Despite that the incremental modeling is
always trained faster with better robustness than its retrained
counterpart (Finding 4 and 5), which is consistent with the
belief, the distinction may be practically insignificant, e.g.,
they differ only in milliseconds.

Lesson 2: Trade-off between accuracy and training
time exists, but not always. When considering all learning
algorithms, tread-off is needed based on preferences, but not
always. The findings (Finding 6 and 7) reveal that it is
possible for the incremental modeling to perform better on
both accuracy and training time; This is partially comply with
the general belief.

Lesson 3: Runtime fluctuation (i.e., number of drifts
and deviations of data) could indeed impose non-trivial
monotonic impacts on the accuracy, but limited on training
time of both modeling methods. Our empirical findings
(Finding 8 and 9) reveal that, in contrast to the retrained
modeling, the accuracy of incremental modeling exhibits gen-
erally stronger, monotonic correlations to the number of drifts

and deviations of data, causing it to degrades faster with
higher number of drifts and to improve quicker when the data
deviations increases. The correlation between training time of
both modeling methods and mRSD tends to be arbitrary, with
the only clear correlation such that the incremental modeling
trains faster as the number of drifts increases.

These results provide greater insights for the software
engineers to choose the modeling methods. For example, by
analyzing the collected data, one can infer that the incremental
modeling is more promising in terms of accuracy when the
number of drifts becomes smaller while the data deviations
increases, which also come with an increased training time.

VI. THREATS TO VALIDITY

Due to the large variability of adaptable software, our find-
ings may not be always applicable to all contexts. However,
this kind of threats to external validity is not uncommon in
empirical software engineering. We have attempted to mitigate
this by conducting evaluations on three diverse and real-
world adaptable software systems, 5 performance indicators,
8 machine learning algorithms and various settings, leading to
a combinatorial total of 1,360 different conditions.

Threats to internal validity may be related to the parameters
and stochastic nature of the algorithms. Indeed, the setting
parameters of the learning algorithms may not necessarily be
optimal, they were tailored using step-wise, trail and error
method. But, the same strategy was used for every learning
algorithm and thus this serves as a fair comparison between
them. To improve the stability of results, all cases were
repeated 10 runs, each of which with up to 900 data points.
The resulted traces were observed to be stable. We have also
reported their statistical significance and effect sizes.

VII. CONCLUSION

In this paper, we investigate an important lack of under-
standing in machine learning based performance modeling of
adaptable software by means of empirical study and evalu-
ations. To this end, we empirically compare both retrained
and incremental modeling method on three diverse and real-
world adaptable software systems, under a combinatorial total
of 1,360 different conditions. Our finding reveals that the
general belief is inaccurate, and shows some of the important,
statistically significant factors that are often overlooked in
existing work. The lessons learned would provide greater
insights on the choice of modeling methods when machine
learning is used to build runtime performance model.

Drawing on the findings from this work, we hope to
stimulate a fruitful future research of a more systematic
methodology on choosing between incremental and retrained
modeling. In particular, the results serve as the foundation to
create automatic tools that assist the software engineers on
deciding the choice for a given adaptable software and case.
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[48] V. B. Kampenes, T. Dybå, J. E. Hannay, and D. I. Sjøberg, “A systematic
review of effect size in software engineering experiments,” Information
and Software Technology, vol. 49, no. 11, pp. 1073–1086, 2007.

[49] K. L. Wuensch, “Straightforward statistics for the behavioral sciences,”
Journal of the American Statistical Association, vol. 91, no. 436, pp.
1750–1752, 1996.


