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ABSTRACT
Due to the uncertain and dynamic demand for Quality of Service 
(QoS)  in  cloud-based  systems,  engineering  self-adaptivity  in 
cloud  architectures  require  novel  approaches  to  support  on-
demand elasticity. The architecture should dynamically select an 
elastic strategy, which optimizes the global benefit for QoS and 
cost objectives for all cloud-based services. The architecture shall 
also provide mechanisms for reaching the strategy with minimal 
overhead. However, the challenge in the cloud is that the nature of 
objectives  (e.g.,  throughput  and  the  required  cost)  and  QoS 
interference  could  cause  overlapping  sensitivity  amongst  intra- 
and inter-services objectives, which leads to objective-dependency 
(i.e., conflicted or harmonic) during optimization. In this paper, 
we  propose  a  symbiotic  and  sensitivity-aware  architecture  for 
optimizing global-benefit with reduced overhead in the cloud. The 
architecture dynamically partitions QoS and cost objectives into 
sensitivity  independent  regions, where  the  local  optimums  are 
achieved.  In  addition,  the  architecture  realizes  the  concept  of 
symbiotic feedback loop, which is a bio-directional self-adaptive 
action that not only allows to dynamically monitor and adapt the 
managed  services  by  scaling  to  their  demand,  but  also  to 
adaptively consolidate the managing system by re-partitioning the 
regions based on symptoms. We implement the architecture as a 
prototype extending on decentralized MAPE loop by introducing 
an  Adaptor component.  We  then  experimentally  analyze  and 
evaluate our architecture using hypothetical scenarios. The results 
reveal that our symbiotic and sensitivity-aware architecture is able 
to  produce  even  better  global  benefit  and  smaller  overhead  in 
contrast to other non sensitivity-aware architectures.

Categories and Subject Descriptors
C.2.4  [Computer  Systems  Organization]:  Computer-
Communication Networks—Distributed Systems

General Terms
Performance, Management.
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1. INTRODUCTION
In  cloud  computing  paradigm,  the  cloud-based  services  are 

deployed  as  Software  as-a-Service  (SaaS)  and  are  typically 
supported  by  the  software  stack  in  the  Platform  as-a-Service 
(PaaS) layer [1]. They are also supported with Virtual Machines 
(VM) and hardware within the Infrastructure as-a-Service (IaaS) 
layer  [2].  Under  changing  environmental  conditions  (e.g., 
workload, size of incoming job etc.), it is important to manage and 
control the Quality of Service (QoS) of cloud-based services. By 
QoS, we refer to the non-functional attributes (e.g.,  throughput) 
experienced by the end-users who use these services. In particular, 
the QoS can be managed by various control knobs, which include 
software (e.g., threads) and hardware resources (e.g., CPU) in a 
shared infrastructure. However, inappropriate use of software and 
hardware resources could result in large rental cost to the service. 
In this work, we refer to these control knobs and environmental 
conditions in the cloud as primitives.

With the context in mind, the term elasticity in cloud refers to 
the ability to adaptively scale control knobs to match the demand 
of cloud-based services. Given the uncertainty and dynamics of 
QoS, there is an increasing demand on cloud where the realization 
of  elasticity  can  be  managed  without  human  intervention. 
Therefore, an architecture to address this problem is a contribution 
to the fundamentals of self-adaptive cloud. In particular,  for all 
cloud-based services, this architecture should continuously select 
an  elastic  strategy,  which  is  the  combinatorial  decision  of 
configurations for various control knobs.

Most existing work for elasticity in self-adaptive cloud is either 
cost-optimized  [8]  or  QoS-optimized  [15],  we  argue  that 
elasticity in the cloud should be global-benefit optimized, with an 
attempt to optimize both QoS and the required  rental cost.  The 
optimal  benefit refer  to  the  optimum  performance  of  all  QoS 
attributes with minimal costs for a cloud-based service. If  each 
service in a cloud reaches its optimal benefit, then cloud is said to 
reach  globally-optimal benefit.  Achieve globally-optimal benefit 
in the cloud leads to a win-win situation: the owners of cloud-
based services gain better QoS with less rental cost. On the other 
hand, the cloud provider could better utilize resources and earns 
better reputation.

The global benefit objective consists of various QoS and cost 
objectives. In the rest of the paper, we use objectives to refer to 
various  QoS  and  cost  objectives  of  a  cloud-based  service. 
Objectives in the cloud could be either conflicting or harmonic 
due to the presence of overlapping sensitivity (e.g., being sensitive 
to  at  least  one  identical  primitive)  amongst  different  QoS 
attributes and costs; this is referred to as objective-dependency. By 
sensitivity, we refer to the correlation between the fluctuation of 
QoS/cost  to  the  stimuli  caused  by  changing  primitives.  In 
particular, QoS sensitivity is generally dynamic (i.e., which, when 
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and how primitives correlate with QoS tends to be dynamic) and 
we assume the cost is based on a fixed model and sensitivity. The  
objective-dependency could be either intra- or inter-service. Intra-
service dependency refers to objectives, which are dependent in 
nature. This for example can be rental cost and throughput of a 
service.  The  inter-services  dependency  means  the  objectives  of 
two services could be dependent on each other because of QoS 
interference  caused  by  the  co-located  services  on  the  Virtual 
Machine (VM) [3] (as resources contention on a VM) and the co-
hosted  VMs  on  a  Physical  Machine  (PM)  [4]  (as  resources 
contention on a PM). By QoS interference, we refer to scenarios 
where  fluctuation  of  primitives  can  indirectly  interfere  with 
related  services  and  their  QoS  due  to  resources  contention.  In 
addition, a dynamic service composition in the cloud implies that 
dependency  might  exist  between  QoS/cost  objectives  of  the 
services  on  different  PMs,  as  they  are  in  the  composition  or 
functionally dependent on the same service.

The  problem,  which  this  papers  addresses  is  how  can  the 
architecture  dynamically  and  efficiently  determine  an  elastic 
strategy  that  produces  globally-optimal  benefit.  Nevertheless,  a 
major  challenge  to  the  design  of  the  architecture  is  that  local 
optimization  of  objectives  (e.g.,  optimize  objectives  per-VM) 
might  not  optimize  the  global  benefit  due  to  the  presence  of 
objective-dependency caused by overlapping sensitivity. On the 
other hand, a global optimization in the cloud is likely to result in 
large overhead in selecting an elastic strategy. As a result, there is  
a trade-offs between global benefit and overhead in the design.

A common lack in existing architectures for self-adaptive cloud 
is that they are not sensitivity-aware with respect to QoS and cost. 
Precisely, they partition the cloud into fixed regions; optimize for 
QoS and cost objectives and aggregate the results in each region. 
For example, existing architectures aim at either global optimum 
in  one  global  region  (e.g.,  cloud-level)  or  local  optimum  in 
different local regions (e.g., PM-level, VM-level and service-level) 
asynchronously and independently. Both solutions ignore QoS and 
cost  sensitivity  as  their  optimization  assumes  fixed  region 
granularity. Given that the cloud tends to be dynamic and its QoS 
sensitivity  changes  at  runtime,  these architectures  can result  in 
inappropriate  partitioning  of  regions,  which  can  lead  to  non-
optimal global benefit or large overhead when optimizing for the 
said regions. Both global benefit and the overhead are sensitive to 
the number of services and their objectives  in the optimization 
process.  Therefore,  the  trade-offs  between  global  benefit  and 
overhead is influenced by the region granularity. Consider now a 
complicated scenario,  where the region  granularity is linear to 
both  global  benefit  and  overhead  in  a  given  optimization 
algorithm:  Figure  1  shows  the  likely  trend  of  different  fixed 
region granularities in relation to the global benefit and overhead. 
Based on the degree of granularity in optimization, we classify the 
architecture for self-adaptive cloud into 4 categories, as shown in 
Figure  1.  PM-level denotes  the  architecture  that  partitions  and 
aggregates the objectives of services per-PM regions; it attempts  
to reach local optimum in each region independently. The same 
principle  can be applied  to  service-level and  VM-level.  On the 
other extreme, cloud-level simply consider the cloud as one region 
and  employ  an  architecture  that  optimizes  the  highest  level 
aggregation  for  objectives  of  all  cloud-based  services  to  reach 
global  optimum.  In  Figure  1,  we  can  see  that  finer  region 
granularity implies less number of services and objectives within 
each  region.  This  tends  to  result  in  worse  global  benefit  but 
smaller overhead.

In  this  paper,  we  propose  symbiotic  and  sensitivity-aware 
architecture, which leverages on a decentralized MAPE loop. This 
architecture can efficiently produce globally-optimal benefit with 

Figure 1.  Approximated relationship of fixed region 
granularities to global benefit and overhead in cloud.

reduced overhead. The novelty is that QoS and cost objectives of 
cloud-based services are dynamically partitioned into  sensitivity  
independent  regions where  any  objectives  of  a  region  are 
independent  to those  of  the   other   regions,   as  a  result  each 
region  can  be  optimized  locally.  Particularly,  we  dynamically 
determine the level of region granularity on the fly. In addition, 
we  apply  symbiotic  feedback  loops  to  the  architecture. The  
differences  between  such  symbiotic  feedback  and  the 
conventional feedback is that the adaptation in the former one is 
bio-directional: the architecture is not only able to monitor and 
select better elastic strategy to the managed services, but also able 
to  adaptively  consolidate  itself  by  re-partitioning  the  regions. 
Henceforth,  such  bio-directional  adaptation is  referred  to  as 
symbiotic feedback.

The  architecture  leverages  on  our  previous  work[3],  which 
reports  on  a  sensitivity-aware  QoS  modeling  approach  that 
adaptively  learn  the  correlation  between  QoS  and  the  useful 
primitives in cloud. In this paper, we apply our modeling approach 
to learn dynamic QoS sensitivity so we can partition the regions. 
Specifically, we make the following novel contributions:

Firstly,  unlike existing work,  which model the QoS/cost per-
application  or  per-VM.  we  look  at  the  QoS and  cost  for  each 
individual services.

Secondly,  we  consider  intra-  and  inter-services  objective-
dependency. In addition, we do not rely on fixed instance-type to 
form an elastic strategy, but we assume arbitrary combinations of 
control  knobs.  This  would  provide  more flexible  elasticity  and 
follows the current trend in cloud [5].

Thirdly,  to  enable sensitivity-awareness  in  the  proposed 
architecture, we develop a 2-phases region partition strategy that 
partitions  the  QoS/cost  objectives  into  sensitivity  independent 
super-regions.  These  super-regions  can  further  partition  the 
objectives  into  sensitivity  independent  regions,  where  the  local 
objectives are optimized independently. The partitioning of super-
regions  and  regions  rely  on  deployment  (e.g.,  VM  to  PM 
mapping)  and their  QoS/cost  sensitivity  respectively.  The basic 
principle behind the notions of sensitivity independent regions is 
that,  we  can  reach  globally-optimal  benefit  by  asynchronously 
finding locally-optimal benefit within each sensitivity independent 
region. This can eventually reduce the search space.

Fourthly,  we propose the concept of symbiotic feedback and 
adaptation  in  the  architecture,  which  realizes  bio-directional 
adaptation between the managed services and the architecture. 

Fifthly,  we  implement  our  architecture  prototype  based  on 
MAPE loop with an extended Adaptor component, which realized 
a hierarchical stack to manage the deployment and QoS sensitivity 
changes separately.  We experimentally  evaluate  the architecture 
via  hypothetical  scenarios,  which  contain  different  numbers  of 
services.  The  results  reveal  that  our  symbiotic  and  sensitivity-
aware architecture is able to produce similar global benefit to the 
PM-level architecture, and better than cloud-level, VM-level and 
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service-level architectures. On the other hand, it produces smaller 
overhead than the cloud-level and the PM-level architecture; and 
could  be  similar  to  that  of  the  service-level  and  the  VM-level  
ones. In particular, the achieved global benefit  and overhead in 
our architecture tends to be better when it is possible to have more 
sensitivity independent regions.

In the following, Section 2 decomposes the problem of globally 
optimizing benefit in elastic cloud and presents the system model. 
Section 3 specifies the logical notions of super-region and region. 
Section 4 describes the physical deployment of our architecture 
and  the  components.  Section  5  reports  on  the  evaluation  and 
analysis of experimental results. Section 6 and 7 discuss related 
work and present the conclusion respectively.

2. MODEL AND PROBLEM ANALYSIS
In this section, we present our assumptions and the models used 

for analyzing the problem. 

2.1 Cloud System Model
We assume that cloud-based applications are composed of one 

or  more  services,  each  with  its  QoS  requirements  and  can 
experience  different  environmental  changes  (e.g.,  changes  in 
workload). These services are deployed on a cloud software stack, 
which can be setup using various configurations and tactics.  In 
addition,  they  are  hosted  on  the  cloud  infrastructure,  where 
resources are shared via VMs. As a result, the control knobs and 
environmental  conditions  could  significantly  influences  their 
QoSs. In distributed environment like cloud, each tier in a multi-
tiers  application,  composed of  concrete  services  {S1,  S2,  …  Si} 
may  have  multiple  replicas  deployed  on  different  VMs.  The 
replica of a tier running on a VM is assumed to have the replicas  
of its services running on the same VM. In this work, we refer to 
the  replicas  of  concrete  services  as  service-instances:  the  jth 
service-instance  of  the  ith concrete  service  is  denoted  by  Sij. 
Unlike existing work [e.g.,  4, 14, 15], which focus on realizing 
elasticity at the application and VM level, we aim to adaptively 
optimize the QoS attributes  and rental  cost  of  utilizing control 
knobs for each individual service-instance, considering the QoS 
interferences caused by the co-located service-instances on a VM 
and the co-hosted VMs on a PM. 

In  addition,  we  do  not  consider  global  resources  contention 
caused by shortage in cloud capacity; our architecture works for 
cases where software and hardware resources tend to be available, 
which is normal in a cloud environment. Henceforth, we assume 
that the maximum demand of software and hardware resources for 
all cloud service-instances (e.g., according to their budget) should 
be satisfied by the capability of the cloud provider.  Under such 
assumption,  we  eliminate  extreme cases  where  the  capacity  of 
cloud provider reaches its limits causing likely global resources 
contention. This is because the increasing demand of each service-
instance would eventually be satisfied by scale up/out as long as 
the  cost  does  not  exceed  the  budget.  We  believe  this  is  a 
reasonable assumption as in realistic scenarios, proper admission 
control  can  be  applied  to  restrict  the  number  of  cloud-based 
service-instances.  Moreover,  in  case  where  the  cloud  provider 
actually encounters capacity shortage, the unsatisfied services can 
be  switched  to  an  alternative  provider  via  a  cloud  selection 
mechanism, which presumably hold our assumption. However, the 
design of admission control and selection mechanism is outside 
the scope of this paper.

2.2 Cloud Primitives
We advocate a fine-grained approach to the modeling of QoS. 

To achieve this, we decompose the notion of primitives into two 
major categories:  these  are  Environmental Primitives (EP)  and 

Figure 2.  The cloud primitives.

Control Primitives (CP). We posit that CP can be either software 
or  hardware,  which  could  be  managed  by  cloud  providers  to 
support QoS provisioning. In particular, software CPs are software 
tactics and configurations;  such  as  the   number  of  threads  in 
thread  pool  and  its  life  time,  the  number  of  connections  in 
database connection pool, security and load balancing policies etc. 
Whereas, hardware CPs are computational resources provisioning, 
such  as  CPU,  memory  and  bandwidth.  As  shown in  Figure  2, 
software and hardware control  primitives  rely on the PaaS and 
IaaS layers respectively.  In particular,  it  is  a non-trivial  task to 
consider software CPs when QoS modeling in the cloud as they 
tend to influence QoSs significantly [6]. On the other hand, we 
look at  EPs in  the context  of  highly dynamic scenarios,  which 
reflect the cloud setting. The EPs can significantly influence the 
QoS. The cloud providers often can not predict and fully control 
their  behavior.  Examples  include  unbounded  workload  and 
unpredictable bound received data etc. If the cloud provider would 
be  able  to  predict  and control  the presence of  these scenarios, 
these can be then considered as CPs. 

2.3 Problem Models and Objective
We  formulate  an  “online”  QoS  model,  which  captures  both 

dynamic sensitivity and interference with respect to the  selected 
primitives over time. The model at  given sampling interval  t is 
formally expressed as:

QoS k
ij (t )= f ( SP k

ij ( t ) , δ)  (1)

where QoS k
ij( t)  is the average value of kth QoS of Sij at   interval 

t. f is the QoS function, which dynamically changes at runtime. δ
refers to any other inputs that are required by the algorithm to 
train  f  apart from the primitives. Examples of other inputs may 
include historical QoS values and tuning variables. To handle QoS 
interferences, we denote the input SP k

ij(t) of Eq. 1 as the selected 
primitives matrix  of  QoS k

ij ( t)  at interval  t.  This matrix contains 
the selected primitive inputs of QoS k

ij ( t)  and it is updated online. 
In this work, we dynamically update SP k

ij(t)  and function f using 
the QoS modeling approach described in our previous work [3].

In the context of cloud, utilizing CPs may be subject to certain 
monetary  cost  to  the  service  owners,  therefore  the  total  costs 
model for Sij can be represented as:

Cost ij=∑
a=1

n

g (CP a
ij( t) , P a)  (2)

where g is the fixed and unified cost function for each type of CP, 
and n is the total number of CP type that used by service-instance 
Sij to supports its QoS attributes. CPa

ij( t)  is the amount of the ath 
CP provision for  Sij at  interval  t.  Pa denotes the corresponding 
price per unit of the ath CP. In this work, we assume that the price 
of each CP type is fixed for all service providers and their service-
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instances. It is worth noting that the hardware CPs (e.g., CPU and 
memory) can be only provisioned for each VM whereas the cost  
model is per-service based, thus the price of a hardware CP should 
be equally proportioned to each of the service-instances deployed 
on the provisioned VM. 

To  achieve globally-optimal  benefit in  elastic  cloud,  our 
architecture  aims  at  adaptively  and  dynamically  determine  and 
scale to the CP configurations, which supports the best of all QoS 
attributes  (Eq.  1)  with  minimal  costs  (Eq.  2)  for  all  service-
instances in the cloud. In this work, we apply a linear weighted-
sum aggregation to express the global  benefit for QoS attributes 
and costs of different service-instances in the cloud. Formally, at 
any given interval  t, we aim to optimize the global objective by 
maximizing the function in Eq. 3.

∑
i=1

n

∑
j=1

m

w' ij⋅(∑
a

l

wa⋅QoS a
ij ( t)−∑

b

r

wb⋅QoSb
ij( t )−w( l+ r+1 )⋅Cost ij)  (3)

where n and m are the total number of services and their instances 
in the cloud; w'ij  is the weight for each service-instance. Because 
the global objective is to maximize Eq. 3, we need to carefully 
place the maximized QoS (e.g.,  throughput) and the minimized 
ones (e.g., response time); thus l and r are the total number of the 
maximized and minimized QoS for  Sij respectively; wa,  wb  and 
w(l+r+1) are refer to the corresponding weight of the QoS and cost 
for  Sij. In addition, the optimization of Eq.3 should be subject to 
the constraint of budget and SLA.

It is worth noting that the purpose of this work is not to find out 
the best formalization of the global  benefit and its optimization 
algorithms; but to evaluate the effectiveness of our symbiotic and 
sensitivity-aware architecture  towards  reaching  globally-optimal 
benefit.  In  future  work,  we  will  look  at  more  sophisticated 
formalization (e.g., removal of the weights) of the global benefit. 

3. LOGICAL VIEW OF THE 
ARCHITECTURE 

In the section, we explain the notions and principles behind our 
architecture from a logical perspective. The practical architecture 
deployment in cloud environment is demonstrated thereafter.

3.1 An Overview
Recall that our objective is to optimize the global benefit for 

QoS attributes and costs of all service-instances, therefore from a 
logical point of view, our basic problem entity in the cloud are  
different QoS (max/min Eq. 1) and cost (min Eq. 2) objectives of 
different  service-instances.  The  objective  functions  of  these 
objectives  are  their  corresponding  QoS/cost  models,  the  kth 
objective of Sij is denoted by O k

ij . In particular, we argue that any 
two objectives are either dependent (i.e., conflicted or harmonic) 
or  independent  (i.e.,  an objective is  neither  directly/transitively 
conflicted  nor  harmonic  with  another).  With  this  in  mind,  we 
propose  a  2-phased  region  partitioning,  where  the  first  phase 
partitions  the  objectives  into  different  sensitivity independent 
super-region,  which defines the boundary of likely independent 
objectives  for  the  entire  cloud  under  current  deployment.  The 
purpose  of  super-region  is  to  classify  those  objectives,  which 
might be independent for now but could become dependent to the 
others  as  the  QoS  sensitivity  changes.  In  other  words,  the 
objectives  should  be  partitioned  into  the  same  super-region  as 
long  as  they  are  likely to  have  objectives-dependency.  In  the 
second phase, the objectives within each super-region are further 
partitioned into smaller sensitivity independent regions where the 
local optimization takes place. By sensitivity independent regions, 
we refer to the case where any objective from a region is currently 

Figure 3.  Overview of the notion of super-region and region.

independent to any objective from another region at given time. 
By doing so, the search space of the global  objective  function  in 
Eq.3 is partitioned into n subspaces based on sensitivity, where n 
is equivalent to the number of regions. The objectives within each 
subspace (still can be expressed by Eq. 3, but with smaller search 
space) is optimized independently and asynchronously. 

The basic principle behind our symbiotic and sensitivity-aware 
cloud architecture is that, we can reach a globally-optimal benefit 
by  asynchronously  doing  local  optimization  for  locally-optimal 
benefit  within  different  sensitivity  independent  regions,  which 
have smaller search space. The partitioning of super-region and 
their regions is a dynamic online process based on the deployment 
and sensitivity respectively, which are expressed by rules (we will 
describe in Section 3.2 and 3.3). 

In the following, we use SRi  to denote the ith super-region and 
Rk

i  to  denote  the  kth region  of  the  ith super-region.  The 
partitioning should follow the constraints below:

Constraint 1: ∀( Ra
i ∩Rb

j)=∅

Constraint 2: if (∃Oa
ij∈SRk) and (∃Ob

ij∈SR l) , then SRk=SRl

Constraint 1 means that each objective can at most belongs to 
one region within a super-region.  Constraint 2  indicates that all 
objectives  of  a  service-instance  should  belong  to  an  identical 
super-region. However, these objectives might belong to different 
regions  within  such  super-region.  The  logical  view  of  our  2-
phased region principle in the cloud is shown in Figure 3 where 
we assume a simple scenario consists of 3 PMs, 4 VMs and 6 
service-instances with various QoS/cost objectives. The two red 
cycles  represent  two  super-regions.  Different  colors  on  the 
objective entities express different regions within those two super-
regions. In addition, there is a functional dependency between S41 

and  S31,  which means that  S41 requires  the invocation of  S31 to 
complete its service.

3.2 Super-Regions
Objectives  in  the entire  cloud can be partitioned to  different 

super-regions. Each of the super-region contains the objectives of 
service-instances  that  are  likely  to  be  directly  or  transitively 
dependent. The partitioning rule of super-regions is specified as:

Rule 1: Given S ab ,S cd  and ∀O i
cd ∈SRk , then(∀O j

ab of Sab)
belongs to SRk if :

1) Sab and Scd are deployed on the same VM/PM, or
2) Sab has direct functional dependency on Scd, or
3) Scd has direct functional dependency on Sab . 
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Rule 1 assumes that given arbitrary service-instances  Sab  and 
Scd. It also assume that the objectives of Scd are in the super-region 
SRk. Under these assumptions, objectives of Sab are said to belong 
to SRk if and only if it follows any of the above three conditions 
(either directly or transitively).

Consider the scenario in Figure 3 as an example. The objectives 
on  PM1  are  assigned  to  the  same  super-region  because  they 
satisfy condition 1 in Rule 1. On the other hand, the objectives on 
PM2 and PM3 form another super-region as they satisfy all the 
conditions. In particular, the objectives of  S12  and S31  are within 
the same super-region even they do not directly satisfy any of the 
conditions. This is because S41  functionally depends on S31  , thus 
they satisfy condition 2. In addition, S41 and S12 satisfy condition 1. 
As a result,  the  S12  and  S31  transitively satisfy the conditions in 
Rule 1 via S41.

Given the assumption that shortage in cloud capacity is beyond 
our  concerns,  the  partition  rule  of  super-regions  are  designed 
based on the fact that the objectives of a service-instance and its 
functionally  dependent  service-instances  are  very  likely  be 
dependent under some scenarios (e.g., sequential interaction).  In 
addition, the likely QoS interference can only be caused by the co-
located service-instances on a VM and the co-hosted VMs on a 
PM. Therefore, the objectives from any service-instances that do 
not  directly  or  transitively  satisfy  Rule  1 can  be  optimized 
independently  as  they  would  have  no  way  to  influence  each 
others.

The partitioning of super-region could change at runtime due to 
the dynamic cloud environment. The super-regions would be re-
partitioned  according  to  Rule  1  upon  deployment  changes,  for 
example: VM migration/replication,  PM boots-up/shutdown and 
changes in service compositions etc.

3.3 Regions
Within  each  super-region,  we  further  partition  the  objectives 

into  different  sensitivity  independent  regions,  where  a  local 
optimization  algorithm  is  running.  The  partitioning  of  regions 
could be triggered upon symptoms described in Section 4.  The 
aim is to further narrow down the number of dependent objectives 
according to their  current  sensitivity at a given time. Therefore, 
the  partition  Rule  2 of  regions  are  designed  based  on  the 
sensitivity of QoS and cost models presented in Section 2:   
 Rule 2: Within a super-region SRl, given Oi

cd and ∃O j
ab∈R k

l ,
then Oi

cd∈Rk
l  if O i

cd  has inputs in common to  O j
ab .

Concretely, Rule 2 expresses that an objective should belongs to 
a region Rk

l  if and only if it has at least one identical primitive  

input to one or more objectives from Rk
l  (meaning that they are 

dependent  and  have  overlapping  sensitivity).  If  two  objectives 
have neither common inputs themselves nor common inputs to the 
same  intermediate  objectives,  they  are  said  to  be  independent 
during optimization.

Using the scenario in Figure 3 as an example. There are two 
regions within the left super-region; this is because the objectives 
of  S11,  S21 and  S42 use certain identical primitives inputs. On the 
other hand, the objectives of S32 is in an alternative region because 
it  is  insensitive to  and has  no identical  inputs  to  any of  those 
objectives from S11 and S21 as it suffers limited QoS interference on 
the  co-located  services.  In  particular,  suppose  that  O2

11  has 
identical inputs to O1

21  and O1
11 ;  O1

11  and O1
21   do not directly 

satisfy  Rule 2.  However, all of these 3 objectives are put in the 
same region because O1

11  and O1
21  are transitively satisfy Rule 2 

via  O2
11 .   Similar scenario occurs  in the right super-region.  In 

addition, we can see that even O1
31 , O2

31  and O3
31  are objectives 

of the same service-instance,  O2
31  is put in an alternative region 

to that of O1
31  and O3

31 . This is a possible scenario: suppose that 
O3

31  is  cost  objective,  O1
31  and  O2

31  are  throughput  and 
consistency QoS objective respectively; it is  likely that  O2

31  is 
only sensitive to an unique CP (e.g., ordering error), which is free 
of charge and henceforth, it is independent on O1

31  and O3
31 .

Similar to the super-regions, the partitions of regions are also 
subject to dynamic changes. However, region portioning is likely 
to change more frequently than that of the super-region. This is 
because it requires updates when changes in QoS sensitivity tend 
to be significant. Examples of significant QoS sensitivity changes 
could include scenarios,  where QoS is  becoming sensitive to  a 
new primitive or insensitive to an existing primitive. Insignificant 
changes on how the primitives correlate with QoS can not trigger 
re-partitioning of the regions.

4. ARCHITECTURE AND 
COMPONENTS

In this section, we specify the deployment of architecture and 
we detail its components.

4.1 The Bio-directional Adaptation in 
Symbiotic Loop

The physical deployment of architecture is shown in Figure 4. 
As  we  can  see  that  the  architecture  is  deployed  as  distributed 
instances, each of which running on a separate VM (e.g., Dom0 on 
Xen  [7])  on  every  PM  in  the  cloud.  In  particular,  for  each 
instance,  we  adopt  a  decentralized  MAPE  style.  Unlike  the 
traditional realization of MAPE, our architecture adapts symbiotic 
loop to enable bio-directional adaptation in the sense that: 1) it 
does  not  only  allow  the  MAPE  to  monitor  and  manage  the 
service-instances  by  dynamically  search  an  elastic  strategy  for 
globally-optimal  benefit  upon  symptoms.  2)  It  also  adaptively 
consolidates  itself  with  the  up-to-dated  context  information  by 
dynamically  re-partitioning the super-regions and regions.  Such 
consolidation is realized in the extended  Adaptor component. In 
addition, the architecture can trigger adaptations in both proactive 
and  reactive  manners.  In  our  prototype,  the  communication 
amongst  instances  from  different  PMs  is  realized  by  Group 
Communication  Service  (GMS)  [16],  which  supports  fast  and 
reliable multicast protocols.

The workflow of bio-directional adaptation has been shown in 
Figure 4. More precisely, the sensor on each PM collects the data 
(e.g., QoS values, CP usages and EP values) from the underlying 
VMs and service-instances; and possibly from other PMs due to 
functional dependency (step 1). In addition, the sensor could sense 
deployment changes and QoS sensitivity changes from other PMs. 
Next in step 2, the sensor passes raw information it received to the 
Monitor (denoted by M) for normalizing the data. At step 3, the 
Analyzer (denoted by A) receives both current and historical data 
after normalization, this data is used by QoS modeler to build QoS 
models (step 3.1). The QoS models, cost models and the related 
detected  changes  are  transiting  to  the  Adaptor via  step  4.  The 
partitioning  of  super-region/region  and/or  adaptation  can  be 
triggered if one or more of the following symptoms is detected:

• Symptoms 1: Proactively detect if the QoS of a service-
instance is likely to violate SLA constraint by using the 
QoS models.

• Symptoms 2: Reactively detect if the QoS of a service-
instance  has  violated  its  SLA constraint  and/or  if  the 
utilization of a CP has violated  the constraint.
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• Symptoms 3: Significant changes in the QoS sensitivity 
of the objectives in a managed region.

• Symptoms 4: Deployment changes occur in a managed 
super-region.

Symptoms 1 and 2 would trigger the elastic adaptation of the 
managed service-instance(s); whereas, symptoms 3 and 4 require 
the architecture to adapt itself by re-partitioning the super-regions 
and/or regions. In particular, to prevent the problem of triggering 
elastic adaptation too frequently, symptoms 1 and 2 are valid only 
if  the  leap  time  after the  previous  adaptation  for  the  affected 
service-instances is more than a threshold  t.  Once we reach the 
Adaptor component, the changes in symptoms 3 and 4 would be 
addressed separately in  a  hierarchical  stack.  Concretely,  Super-
Region Control component manages symptom 4 and maintains the 
super-region  on  to  its  PM (step  4.1) as  only  one  super-region 
exists on a PM according to  Rule 1. In the lower stack,  Region 
Control component  manages  the  regions  within  the 
aforementioned super-region (step 4.2 and 4.3) according to Rule 
2;  it  aims  to  cope  with  symptom 3.  Additionally,  it  could  be 
triggered by symptom 4 as the partition of a super-region might  
change.  Once  both  symptoms  3  and/or  4  are  resolved,  the 
propagation goes to the Planner component (denoted by P) where 
the  Autoscaler  component  within  each  region  is  designed  to 
address symptoms 1 and 2. This can be done through dynamically 
searching the best adaptation strategies toward the locally-optimal 
benefit of region, using the QoS and cost models (step 4.4).  In 
particular,  the  autoscaler  of  each  regions  is  triggered 
independently and asynchronously. There are cases where a region 
might be associated with multiple PMs (we will explain this in 
Section  4.5).  Therefore  in  order  to  ensure  that  each  region  is  
optimized on one PM; the autoscaler can be activated only if the 
leader of those PMs confirm that the region is not currently being 
optimized on any other PMs. These processes are expressed as 
step 4.5 and 4.6.

Once the elastic strategy is determined, the process proceeds to 
the  Executor(s) (denoted  by  E)  via  step  5.  In  particular,  E is 
responsible  for  determining  which  concrete  actions  (e.g.,  scale 
up/down, in/out and/or VM migration and replication etc) need to 
be taken in order to fulfill the elastic strategy. In this work, we 
consider both vertical and horizontal scaling and apply a simple 
solution to determine the actions, this is: we always try vertical 
scaling (i.e.,  scale up/down) first before horizontal scaling (i.e., 
scale out/in). This is because horizontal scaling is usually more 
expensive  than  vertical  scaling.  As  for  the  VM  migration/ 
replication  decision,  we  always  choose  the  one  that  result  in 
smaller  overhead  based  on  a  predefined  VM profiling  pattern. 
Finally, the actions are taken by the actuator via step 6 and 7.

4.2  QoS Modeler
The  QoS  models  are  dynamically  constructed  within  QoS 

modeler component using our previous work [3]. In particular, the 
modeling is an online and continuous process, which captures the 
dynamic QoS sensitivity of the underlying service-instance. Each 
PM has a dedicated QoS modeler to update the QoS models for all 
service-instances deployed on the VMs, which hosted on the said 
PM. In this work, we simply make use of the resulted models to 
search the best elastic strategy and to determine the partitions of 
regions within each super-region in the Planer component. 

4.3 Super-Region Control
Super-Region Control is designed to manage the partitioning of 

super-regions in the cloud and it aims to cope with symptom 4. In 
particular,  the  dedicated  super-region control on each PM only 
maintains one  super-region.  As  a  result,  each  PM  only  shares 

Figure 4.  Overview of the architecture deployment.

partial  view  of  the  entire  super-region  partitions  in  cloud.  To 
determine  re-partitioning  following   deployment  changes,  each 
PM  share  a  global  knowledge  of  the deployment dependency 
(i.e., service-instance to VM mapping, VM to PM mapping and 
the  functional  dependency  of  service-instances).  The  initial 
partitions can be easily setup by the cloud administrator using the 
rules mentioned in Section 3.  When deployment changes occur 
(symptom  4),  each  super-region  control updates  the  global 
knowledge  of  deployment  dependency;  and  its  super-region 
according to  Rule 1. As mentioned, the communication amongst 
PMs  is  realized  by  GMS,  thus  the  PM where  the  deployment 
changes are taken place would notify the other PMs..

It is possible that two or more  super-region controls maintain 
the same super-region. Recall the scenario in Figure 3, the right  
super-region would be maintained by both PM2 and PM3 as both 
PM  owns  objectives,  which  belong  to  the  same  super-region. 
However,  the  super-region  controls on  both  PMs only  need to 
asynchronously maintain an identical view of super-region, and 
make  sure  their  view  is  consistent  when  deployment  changes 
occur. Henceforth there is no extra overhead caused by constantly 
reaching consensus.

4.4 Region Control
When the necessary re-partition of super-regions is completed, 

Region  Control is  responsible  for  managing  the  partitions  of 
multiple  regions  within  a  super-region;  it  aims  to  cope  with 
symptom  3.  However,  it  should  be  triggered  if  symptom  4  is 
detected since the partition of super-region might change. As there 
is only one super-region on each PM, the regions within super-
regions are managed by a dedicated region control. In particular, 
the  region  control keeps  track  on  the  models  of  the  managed 
objectives. Specifically, at the end of each model update intervals, 
the region control would examine whether any deployment and/or 
significant QoS sensitivity changes occur in the managed super-
region  and  regions.  If  this  is  the case,  it  then re-partitions the 
objectives  to  regions  within  the  corresponding  super-region, 
according to Rule 2.

 It  is  possible that two or more  region controls maintain the 
same regions. As shown in Figure 3, the region of  O1

41 ,  O2
41 , 

O1
31  and  O3

31  cover  both  PM2 and  PM3,  thus  this  region  is 
maintained  on  both  PMs.  In this  case,  the  region control  only 
required to keep an identical view of the said region and ensure 
the related QoS models are updated.
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Table 1. Initial deployments and the examined 
objectives/primitives

PM VM Service-
instance

Objectives Software 
CP

Hardware 
CP

EP

PM1

VM

S11 Throughput 
and cost

The max 
threads

CPU and 
Memory

workload

S21 Throughput 
and cost

The max 
threads

workload

VM

S31 Throughput 
and cost

The max 
threads

CPU and 
Memory

workload

S41 Throughput 
and cost

The max 
threads

workload

PM2 VM

S12 Throughput 
and cost

The max 
threads

CPU and 
Memory

workload

S51 Throughput 
and cost

The max 
threads

workload

PM3 VM

S32 Throughput 
and cost

The max 
threads

CPU and 
Memory

workload

S61 Throughput 
and cost

The max 
threads

workload

4.5 Autoscaler of Region
Once  the  partitions  of  both  super-region  and  region  are 

completed, the autoscaler of each region would be in a functional 
stage to trigger local optimization for searching an elastic strategy.  
In particular, the autoscaler aims to cope with symptoms 1 and 2. 
It is possible that, the region control on different PMs manage the 
same region as mentioned in Section 4.4.  To prevent  the same 
region from being optimized on more than one PM, we elect a 
leader for each group of PMs that manage the same region. More 
precisely, upon the occurrence of symptoms 1 or 2, the autoscaler  
of the corresponding region firstly  queries  the leader  regarding 
whether  the region,  which the affected objective belongs to,  is 
currently  under  optimization.  If  it  is  not  the  case,  it  will  then 
trigger  local  optimizations;  otherwise,  the  process  should  be 
aborted. Leader would be notified once the local optimization and 
the corresponding  actuations  are  completed.  In  our  preliminary 
prototype, we elect the oldest PM as the leader of each group. 

5. EXPERIMENTAL EVALUATION
To evaluate global benefit of the elastic strategies produced by 

our architecture and the overhead for reaching these strategies, we 
have conducted an experimental evaluation. In particular, we have 
implemented the architecture prototype using Java JDK1.6, and 
we  assessed  the  elastic  scaling  of  8  hypothetical  cloud-based 
service-instances under the control of our architecture prototype. 
In the experiment setup, each service-instance was deployed on 
software  stack  including  Apache,  Tomcat  and  MySQL.  We 
simulate  a  synthetical  workload  to  each  service-instance.  The 
workload  has  been  designed  in  a  way  that  the  intensity  was 
sufficient for causing QoS interference on the co-located services 
and co-hosted VMs. The testbed is a private cloud, where PMs are 
connected by Gigabit Ethernet and a switch. Xen [7] is used as the 
underlying hypervisor. The initial deployment and the considered 
CP/EP of our experiments are shown on Table 1. The scale of each 
CP and their corresponding prices are specified in Table 2.

We compare our  symbiotic  and  sensitivity-aware architecture 
(we  simply  refer  to  as  sensitivity-aware  architecture  in  the 
following sections) to other 4 architectural styles that do not cater 
for sensitivity. Each of the 4 architectures assumes different fixed 
region granularities: service-level, VM-level, PM-level and cloud-
level  architectures.  Because  these  4  styles  do  not  consider 
symptoms  3  and  4;  they  trigger  elastic  adaptation  only  when 

Table 2. Scaling options and price of control primitives
CP Optional Values Unit Price

Max 
Threads

5,10,15,20,25,30,35,40,45,50 Thread 
count

$0.8 for each 5 
unit per hr

CPU 1, 2,3, 4,5,6, 7, 8 Compute 
Unit

$2.5 for each 1 
unit per hr

Memory 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0
.9,1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,

1.8,1.9,2

GB $1.5 for each 
0.1 unit per hr

 Table 3. Number of regions for each architecture under 
different setups of service-instances

Setup

Number of regions

symbiotic and 
sensitivity-aware

cloud-
level

PM-
level

VM-
level

service-
level

2 service-instances maximum of 1 1 1 1 2

4 service-instances maximum of 1 1 1 2 4

6 service-instances maximum of 3 1 2 3 6

8 service-instances maximum of 4 1 3 4 8

symptoms 1 and/or 2 are detected.  
For simplicity, we assume that each service-instance has only 

one  QoS requirement,  which  is  throughput  and  one predefined 
cost model. To optimize the global objective function in Eq.3 , we 
apply random optimization algorithm  with  the  same  number  of 
iterations  for  each  architecture.  This  is  because  exhaustive 
algorithms might not be able to produce a decision efficiently due 
to the large number of possible elastic strategies. In addition, we 
assume  that  these  service-instances  and  their  QoS/cost  are 
equivalently important and thus all weights in the global objective 
function are set to 1.

5.1 The Global Benefit
To examine the global benefit of the elastic strategies produced 

by our symbiotic and sensitivity-aware architecture, we run 4, 6 
and  8  service-instances  setups  separately  for  100  sampling 
intervals. For each of the setup, we collect the quality of global 
benefit  for each elasticity strategy made during the period. The 
purpose of the different setups is to examine the sensitivity of our 
architecture to the total number of objectives in cloud. Under each 
setup, we have performed independent runs for each of the five 
architectures. The global benefit is measured by score, which is 
the  average  result  calculated  by  Eq.3  for  the  interval  after  a 
previous elasticity decision point and before the next one. Each of 
these intervals is referred to as effect point. Table 3 illustrates the 
number  of  regions  for  each  architecture,  which  was  observed 
during the experiments.  It  is  worth noting that unlike the other 
architecture,  the  number  of  regions  in  our  symbiotic  and 
sensitivity-aware  architecture  is  subject  to  dynamic  change. 
Therefore, the number for our architecture shown in Table 3 is the 
maximum observed partitions of regions.

Figure 5-7 illustrate the results of the global benefit score (y-
axis) in relation to each effect point (x-axis). Precisely, Figure 5 
shows the global benefit of our architecture in contrast to the other 
4 styles using setup for service-instances S11, S21 , S31  and S41. As 
we can see that the differences in global benefit for the sensitivity-
aware, the PM-level and the cloud-level architecture are marginal. 
This is because they partition all the objectives of these 4 service-
instances  within  the  same  region.  Therefore,  they  perform  the 
same under such case. In contrast, the service-level and the VM-
level  architecture  achieve  much  worse  global benefit following 
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Figure 5.  Global-benefit in case of 4 service-instances.

Figure 6.  Global-benefit in case of 6 service-instances.

Figure 7.  Global-benefit in case of 8 service-instances.

the elastic adaptation. This is due to incorrect partitioning of the 
regions as they ignore the sensitivity caused by QoS interferences 
on co-located services and co-hosted VMs, which are significant 
in our experiments. Figure 6 considers two more service-instances 
(S12  and S51) in addition to the ones of  Figure 5. We  can see that 
the service-level and the VM-level architecture performs worse 
than the other three due to the same reason as the previous case.  
Surprisingly,  although  our  architecture  (at  most  3  regions) 
partitions more regions than that of the cloud-level one, its global 
benefit is better than that of the cloud-level one. We believe that 
this is because we apply random algorithm in the optimization and 
our architecture is able to properly partition the objectives into 
more  regions.  This  implies  that  optimizing  locally  and 
asynchronously  on  each  sensitivity  independent  region  could 

result  in emergent global benefit  using probabilistic algorithms. 
The  PM-level  (2  regions)  architecture,  on  the  other  hand  also 
performs better than that of the cloud-level one. We believe that  
this is because it partitions the objectives per-PM, which similar to 
the  partitions  produced  by  our  architecture  and  thus  meets  the 
actual sensitivity in the experiments by chance. The  sensitivity-
aware architecture performs similarly in contrast to the PM-level 
architecture.  This  is  because  they  produce  similar  partitions  of 
regions.  The  only  difference  is  that  our  sensitivity-aware 
architecture  produces  one  extra  region  (we  observe  only  2 
objectives within such region), which is not significant enough to 
produce emergently better results. However, in the next section we
will show that our architecture produces much smaller overhead 
than that of the PM-level one. 
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Finally, Figure 7 illustrates the global benefit for all 8 service-
instances.  We  can  see  that  the  service-level  and  the  VM-level 
architecture  produce  the  worst  results.  The  gap  between  their 
results to the other three is larger than Figure 5 and 6. This is due 
to the fact that they has incorrectly partitioned the regions when 
introducing more service-instances, and henceforth affecting the 
global benefit more seriously. Similar to the case of Figure 6, our 
sensitivity-aware architecture performs slightly better than that of 
the cloud-level one. The PM-level architecture performs similar to 
our architecture for the reasons previously explained. 

In  summary,  the  elastic  adaptations  of  our  symbiotic  and 
sensitivity-aware architecture produces much better global benefit 
than  the  service-level  and  the  VM-level  architecture  under  the 
presence  of  QoS  interferences.  In  addition,  the  global  benefit 
produced by our architecture are slightly better than that of the 
cloud-level architecture and similar to the PM-level architecture.  
We observe  that  the  improvement  in  global  benefit  tend  to  be 
better  when  having  more  sensitivity  independent  regions.  In 
addition,  we believe that  our  architecture  could outperform the 
PM-level  one  when  the  number  of  QoS  attributes  and/or  the 
number of services on each PM increase.

5.2 The Overhead for Reaching Elastic 
Strategy

To evaluate the overhead for reaching an elastic strategy, we 
compare the average time taken in the optimization processes of 
the  symbiotic  and  sensitivity-aware architecture  to  the  other  4 
styles,  under  the  setup  of  2,  4,  6  and  8  service-instances.  In 
particular, the average time is calculated based on the time taken 
for  reaching  all  the  elasticity  strategies  within  the  entire 
experiment run. As shown in Figure 8, which reveals the overhead 
(y-axis)  in  relation to  the number of  service-instances (x-axis), 
we can see that in case of 2 service-instances (S11 and  S21), the 
service-level architecture produces the smallest overhead. This is 
because it performs optimization and reaches a strategy for each 
service-instance  independently.  The  remaining  architectures,  on 
the other hand, produce similar overhead because all the service-
instances exist on a single VM. 

In the case of 4 service-instances (S11,  S21 ,  S31  and  S41),  the 
differences among the sensitivity-aware architecture, the PM-level 
and the cloud-level architectures are marginal. They tend to result 
in bigger  overhead than that  of the service-level and VM-level  
ones.  This is because the  sensitivity-aware architecture  and the 
PM-level  one  only  results  in  one  region;  they  are  actually  the 
same as the cloud-level architecture. In contrast, the service-level 
and the VM-level style are unaffected by the increasing number of 
service-instances. In particular, the VM-level architecture produce 
bigger overhead than that of the service-level one but better than 
the other three. This is attributed to the fact that it optimizes per-
VM,  which  is  coarser-level  than  the  service-level  style.  As 
expected, in case of 6 (S12  and S51 in addition to the case of 4) and 
8  service-instances,  the  overhead  of  the  sensitivity-aware 
architecture and the PM-level one is becoming better than that of 
the cloud-level one. This is because our architecture and the PM-
level style tend to produce more regions (as shown in Table 3), 
which implies that it  is  able to asynchronously search within a 
smaller  search  space  for  each  region  with  less  complexity  in 
contrast to the cloud-level one. On the other hand, the service-
level and the VM-level styles remain unaffected. However, we can 
see that our architecture perform similar to the VM-level style and 
only slightly worse than the service-level style. In contrast to the 
PM-level  style,  our  sensitivity-aware  architecture  still  performs 
better.  This  is  attributed  to  the  fact  that  we  further  allow 
partitioning within a PM. Consequently, this  result  in  one  more 

Figure 8.  Overhead under different numbers of service-
instances.

regions and thus the search space is further reduced. We can see 
that even with only one more region, the achieved overhead of our 
architecture  gains  considerable  improvement.  We  believe  that 
such improvement can be amplified when it is possible to partition 
more regions.

Interestingly,  we can see that  unlike the overhead  for  cloud-
level architecture, which increases linearly; the overhead of our 
sensitivity-aware  architecture  and  the  PM-level  architecture 
increase from the cases of 2 to 4 service-instances. They can drop 
again from the cases of 4 to 6 and remain stable for the case of 8 
service-instances. This  is  because  both  architectures  determine 
that only one region is allowed for the case of 2 and 4 service-
instances. Therefore, it is the same as the cloud-level one and the 
overhead  could  also  increase  in  a  similar  way. When 6  and  8 
service-instances  exist,  both  architectural  styles  result  in  more 
than one region. Henceforth, the average result of overhead tends 
be smaller than previous cases, as there are numbers of elasticity 
decisions made for a region with smaller search spaces than the 
single region in case of 2 and 4 service-instances.  

To conclude, our symbiotic and sensitivity-aware architecture is 
able to achieve smaller overhead in contrast to the cloud-level and 
the PM-level architecture as the number of region increases. The 
overhead of our architecture is close to that of the service-level 
and the VM-level style. However, we can observe from Section 
5.1 that the achieved global benefit are significantly better than 
these two. In addition, the experiments reveal that the overhead of 
our architecture is sensitive to the number of partitioned regions. 
In  particular,  the  more  sensitivity  independent  regions  are 
partitioned, the smaller overhead is  realized. 

6. RELATED WORK
The  increasing  complexity  of  the  elastic  management  of 

applications  in  the  cloud  urges  the  need  for  self-adaptive 
solutions.  Most  of  the  recent  research  on  architecture  for  self-
adaptive cloud rely on classic MAPE, and assume fixed region 
granularity  when  partitioning  and  optimizing  for  QoS/cost 
objectives. Up to our knowledge, none of the existing solutions 
pursue  partitioning  to  optimize  for  QoS and  cost  in  the  cloud 
based on sensitivity. Our previous work [17] is the first attempt to 
conceptually  capture  the  requirements  for  sensitivity-aware 
architecture in the cloud.

Cloud-level  architecture  could  assume  either  centralized  or 
decentralized deployment. The elastic strategy tends to be selected 
by taking the objectives of all cloud-based services into account. 
[8] propose a cost-optimized, hierarchical architecture that select 
elastic  strategy  from  the  lowest  layer  in  the  hierarchy.  These 
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strategies are then combined and the final decision is made in a  
cloud  level  controller.  [9]  present  a  framework  for  optimizing 
benefit of all cloud-based services.  Their approach optimizes for 
benefit.  The  limitation  in  cloud-level  architectures  is  that  the 
overhead heavily relies on the number of service and the possible 
elastic strategies to select. As a result, the consensus in decision 
making  could  easily  become  bottleneck.  Sensitivity-aware 
solutions with  dynamic region  granularity  has  the  potentials  to 
efficiently  reach  the  right  strategy  and  consequently  improve 
adaptation. 

On the other extreme, service-level architecture is proposed as 
they  optimize  the  objectives  for  each  cloud-based  service 
independently with ignorable overhead. [10] propose OPTIMIS, a 
toolkit for managing cloud-based service using fixed elastic rules. 
Their approach is cost-optimized and they only assume horizontal 
scaling of VM, however. [11] describe a service-level architecture 
for automatically controlling each cloud-based service. Unlike our 
work, they do not attempt to optimize for QoS and cost.  They  
discuss  an  automatic  way  to  enable  self-adaptive  cloud.  In 
addition,  they  assume  limited  number  of  elastic  strategies; 
whereas,  we  assume  arbitrary  combinations.  The  lack  of  these 
architecture is that they might not achieve better global benefit for 
all cloud-based services, as they ignore QoS interference.

The VM-level [12, 13] and PM-level [14, 15] architecture result 
in  acceptable  balance  between  globally-optimal  benefit  and 
overhead. In particular, although approaches like [13] aim for per-
application, they only assume one application per-VM. Thus,  it 
can  be  categorized  as  VM-level  architecture.  The  approach 
proposed by [12] aim for benefit, however. Unlike our work, they 
only focus on locally-optimal benefit  on each VM. In addition, 
their  QoS  modeling  rely  on  static  and  offline  approaches.[13] 
propose a framework for SLA enactment in the cloud, they have 
also considered the objective dependency. Nevertheless, they only 
aim for  the  fundamental  objective-dependency  (e.g,  throughput 
and  cost  per-VM)  and  do  not  take  the  objective-dependency 
caused by QoS interference into account; our architecture covers 
both,  however.  [14] report  on a  model predictive control based 
approach for elasticity in self-adaptive cloud. They do not intend 
to  take  QoS interference  into  account,  however.  The  approach 
proposed  by  [4]  has  particularly  catered  for  the  interference 
caused by co-hosted VMs.  They rely on local  optimization per 
VM. The architecture of [15] assume that hybrid and fixed region 
granularity;  they  provide  a  QoS-optimized  architecture  for 
optimization in the cloud based on feedback adaptive loops.  In 
addition, they claim that VM-level architecture should be used for 
SaaS whereas PM-level one for IaaS and a hybrid one for PaaS.

Unlike the aforementioned work, our architecture reaches better 
balance  between  global  benefit  and  overhead  by  dynamically 
partitioning  the  objectives  into  sensitivity  independent  regions. 
We adapt symbiotic loop to realize such. In addition, we assume 
arbitrary  combinations  of  elastic  strategies. In  particular,  the 
architecture  caters  for  QoS  interference  caused  by  co-located 
service-instances and co-hosted VMs.

7. CONCLUSION AND FUTURE WORK
We  have  proposed  a  symbiotic  and  sensitivity-aware 

architecture  for  dynamically  guaranteeing  globally-optimal 
benefit in elastic cloud. In particular, we apply symbiotic feedback 
loops to  the  architecture:  the  architecture  is  not  only  able  to 
monitor  and  adapt  better  elastic  adaptation  strategies  to  the 
managed  services,  but  also  able  to  adaptively  consolidate  its 
sensitivity  awareness  by  re-partitioning  the  regions  for  more 
efficient and effective decision making. Experimentally, we have 

evaluated our architecture with respect to global benefit achieved 
by the produced elastic adaptation strategies and the overhead to 
reach  these  strategies.  We compare  the  results  to  other  4  non-
sensitivity-aware architectural styles. The results reveal that our 
architecture  produces  similar  global  benefit  to  the  PM-level 
architecture,  and  better  than  other  non  sensitivity-aware 
architectures.  On the  other  hand,  it  produces  smaller  overhead 
than the cloud-level and the PM-level architecture; and could be 
similar to that of the service-level and the VM-level ones. The 
improvement  on  global  benefit  and  overhead  tends  to  amplify 
when it is possible to have more regions. In future work, we will 
focus on the design of  more sophisticated formalization of the 
global  objective  function.  We  will  also  investigate  the  other 
optimization algorithms within the proposed architecture.
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