
Symbiotic and Sensitivity-Aware Architecture for Globally-
Optimal Benefit in Self-Adaptive Cloud

Tao Chen
School of Computer Science

University of Birmingham
Birmingham, UK. B15 2TT

txc919@cs.bham.ac.uk

Rami Bahsoon
School of Computer Science

University of Birmingham
Birmingham, UK. B15 2TT

r.bahsoon@cs.bham.ac.uk

ABSTRACT
Due to the uncertain and dynamic demand for Quality of Service
(QoS) in cloud-based systems, engineering self-adaptivity in
cloud architectures require novel approaches to support on-
demand elasticity. The architecture should dynamically select an
elastic strategy, which optimizes the global benefit for QoS and
cost objectives for all cloud-based services. The architecture shall
also provide mechanisms for reaching the strategy with minimal
overhead. However, the challenge in the cloud is that the nature of
objectives (e.g., throughput and the required cost) and QoS
interference could cause overlapping sensitivity amongst intra-
and inter-services objectives, which leads to objective-dependency
(i.e., conflicted or harmonic) during optimization. In this paper,
we propose a symbiotic and sensitivity-aware architecture for
optimizing global-benefit with reduced overhead in the cloud. The
architecture dynamically partitions QoS and cost objectives into
sensitivity independent regions, where the local optimums are
achieved. In addition, the architecture realizes the concept of
symbiotic feedback loop, which is a bio-directional self-adaptive
action that not only allows to dynamically monitor and adapt the
managed services by scaling to their demand, but also to
adaptively consolidate the managing system by re-partitioning the
regions based on symptoms. We implement the architecture as a
prototype extending on decentralized MAPE loop by introducing
an Adaptor component. We then experimentally analyze and
evaluate our architecture using hypothetical scenarios. The results
reveal that our symbiotic and sensitivity-aware architecture is able
to produce even better global benefit and smaller overhead in
contrast to other non sensitivity-aware architectures.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer-
Communication Networks—Distributed Systems

General Terms
Performance, Management.

Keywords
elasticity, cloud computing, optimization, symbiotic architecture.

1. INTRODUCTION
In cloud computing paradigm, the cloud-based services are

deployed as Software as-a-Service (SaaS) and are typically
supported by the software stack in the Platform as-a-Service
(PaaS) layer [1]. They are also supported with Virtual Machines
(VM) and hardware within the Infrastructure as-a-Service (IaaS)
layer [2]. Under changing environmental conditions (e.g.,
workload, size of incoming job etc.), it is important to manage and
control the Quality of Service (QoS) of cloud-based services. By
QoS, we refer to the non-functional attributes (e.g., throughput)
experienced by the end-users who use these services. In particular,
the QoS can be managed by various control knobs, which include
software (e.g., threads) and hardware resources (e.g., CPU) in a
shared infrastructure. However, inappropriate use of software and
hardware resources could result in large rental cost to the service.
In this work, we refer to these control knobs and environmental
conditions in the cloud as primitives.

With the context in mind, the term elasticity in cloud refers to
the ability to adaptively scale control knobs to match the demand
of cloud-based services. Given the uncertainty and dynamics of
QoS, there is an increasing demand on cloud where the realization
of elasticity can be managed without human intervention.
Therefore, an architecture to address this problem is a contribution
to the fundamentals of self-adaptive cloud. In particular, for all
cloud-based services, this architecture should continuously select
an elastic strategy, which is the combinatorial decision of
configurations for various control knobs.

Most existing work for elasticity in self-adaptive cloud is either
cost-optimized [8] or QoS-optimized [15], we argue that
elasticity in the cloud should be global-benefit optimized, with an
attempt to optimize both QoS and the required rental cost. The
optimal benefit refer to the optimum performance of all QoS
attributes with minimal costs for a cloud-based service. If each
service in a cloud reaches its optimal benefit, then cloud is said to
reach globally-optimal benefit. Achieve globally-optimal benefit
in the cloud leads to a win-win situation: the owners of cloud-
based services gain better QoS with less rental cost. On the other
hand, the cloud provider could better utilize resources and earns
better reputation.

The global benefit objective consists of various QoS and cost
objectives. In the rest of the paper, we use objectives to refer to
various QoS and cost objectives of a cloud-based service.
Objectives in the cloud could be either conflicting or harmonic
due to the presence of overlapping sensitivity (e.g., being sensitive
to at least one identical primitive) amongst different QoS
attributes and costs; this is referred to as objective-dependency. By
sensitivity, we refer to the correlation between the fluctuation of
QoS/cost to the stimuli caused by changing primitives. In
particular, QoS sensitivity is generally dynamic (i.e., which, when

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

SEAMS’14, June 2–3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2864-7/14/06...$15.00
http://dx.doi.org/10.1145/2593929.2593931

85

and how primitives correlate with QoS tends to be dynamic) and
we assume the cost is based on a fixed model and sensitivity. The
objective-dependency could be either intra- or inter-service. Intra-
service dependency refers to objectives, which are dependent in
nature. This for example can be rental cost and throughput of a
service. The inter-services dependency means the objectives of
two services could be dependent on each other because of QoS
interference caused by the co-located services on the Virtual
Machine (VM) [3] (as resources contention on a VM) and the co-
hosted VMs on a Physical Machine (PM) [4] (as resources
contention on a PM). By QoS interference, we refer to scenarios
where fluctuation of primitives can indirectly interfere with
related services and their QoS due to resources contention. In
addition, a dynamic service composition in the cloud implies that
dependency might exist between QoS/cost objectives of the
services on different PMs, as they are in the composition or
functionally dependent on the same service.

The problem, which this papers addresses is how can the
architecture dynamically and efficiently determine an elastic
strategy that produces globally-optimal benefit. Nevertheless, a
major challenge to the design of the architecture is that local
optimization of objectives (e.g., optimize objectives per-VM)
might not optimize the global benefit due to the presence of
objective-dependency caused by overlapping sensitivity. On the
other hand, a global optimization in the cloud is likely to result in
large overhead in selecting an elastic strategy. As a result, there is
a trade-offs between global benefit and overhead in the design.

A common lack in existing architectures for self-adaptive cloud
is that they are not sensitivity-aware with respect to QoS and cost.
Precisely, they partition the cloud into fixed regions; optimize for
QoS and cost objectives and aggregate the results in each region.
For example, existing architectures aim at either global optimum
in one global region (e.g., cloud-level) or local optimum in
different local regions (e.g., PM-level, VM-level and service-level)
asynchronously and independently. Both solutions ignore QoS and
cost sensitivity as their optimization assumes fixed region
granularity. Given that the cloud tends to be dynamic and its QoS
sensitivity changes at runtime, these architectures can result in
inappropriate partitioning of regions, which can lead to non-
optimal global benefit or large overhead when optimizing for the
said regions. Both global benefit and the overhead are sensitive to
the number of services and their objectives in the optimization
process. Therefore, the trade-offs between global benefit and
overhead is influenced by the region granularity. Consider now a
complicated scenario, where the region granularity is linear to
both global benefit and overhead in a given optimization
algorithm: Figure 1 shows the likely trend of different fixed
region granularities in relation to the global benefit and overhead.
Based on the degree of granularity in optimization, we classify the
architecture for self-adaptive cloud into 4 categories, as shown in
Figure 1. PM-level denotes the architecture that partitions and
aggregates the objectives of services per-PM regions; it attempts
to reach local optimum in each region independently. The same
principle can be applied to service-level and VM-level. On the
other extreme, cloud-level simply consider the cloud as one region
and employ an architecture that optimizes the highest level
aggregation for objectives of all cloud-based services to reach
global optimum. In Figure 1, we can see that finer region
granularity implies less number of services and objectives within
each region. This tends to result in worse global benefit but
smaller overhead.

In this paper, we propose symbiotic and sensitivity-aware
architecture, which leverages on a decentralized MAPE loop. This
architecture can efficiently produce globally-optimal benefit with

Figure 1. Approximated relationship of fixed region
granularities to global benefit and overhead in cloud.

reduced overhead. The novelty is that QoS and cost objectives of
cloud-based services are dynamically partitioned into sensitivity
independent regions where any objectives of a region are
independent to those of the other regions, as a result each
region can be optimized locally. Particularly, we dynamically
determine the level of region granularity on the fly. In addition,
we apply symbiotic feedback loops to the architecture. The
differences between such symbiotic feedback and the
conventional feedback is that the adaptation in the former one is
bio-directional: the architecture is not only able to monitor and
select better elastic strategy to the managed services, but also able
to adaptively consolidate itself by re-partitioning the regions.
Henceforth, such bio-directional adaptation is referred to as
symbiotic feedback.

The architecture leverages on our previous work[3], which
reports on a sensitivity-aware QoS modeling approach that
adaptively learn the correlation between QoS and the useful
primitives in cloud. In this paper, we apply our modeling approach
to learn dynamic QoS sensitivity so we can partition the regions.
Specifically, we make the following novel contributions:

Firstly, unlike existing work, which model the QoS/cost per-
application or per-VM. we look at the QoS and cost for each
individual services.

Secondly, we consider intra- and inter-services objective-
dependency. In addition, we do not rely on fixed instance-type to
form an elastic strategy, but we assume arbitrary combinations of
control knobs. This would provide more flexible elasticity and
follows the current trend in cloud [5].

Thirdly, to enable sensitivity-awareness in the proposed
architecture, we develop a 2-phases region partition strategy that
partitions the QoS/cost objectives into sensitivity independent
super-regions. These super-regions can further partition the
objectives into sensitivity independent regions, where the local
objectives are optimized independently. The partitioning of super-
regions and regions rely on deployment (e.g., VM to PM
mapping) and their QoS/cost sensitivity respectively. The basic
principle behind the notions of sensitivity independent regions is
that, we can reach globally-optimal benefit by asynchronously
finding locally-optimal benefit within each sensitivity independent
region. This can eventually reduce the search space.

Fourthly, we propose the concept of symbiotic feedback and
adaptation in the architecture, which realizes bio-directional
adaptation between the managed services and the architecture.

Fifthly, we implement our architecture prototype based on
MAPE loop with an extended Adaptor component, which realized
a hierarchical stack to manage the deployment and QoS sensitivity
changes separately. We experimentally evaluate the architecture
via hypothetical scenarios, which contain different numbers of
services. The results reveal that our symbiotic and sensitivity-
aware architecture is able to produce similar global benefit to the
PM-level architecture, and better than cloud-level, VM-level and

Less overhead

Better global benefits

service−level

VM −level

cloud−level

PM −level

Finer region granularity

86

service-level architectures. On the other hand, it produces smaller
overhead than the cloud-level and the PM-level architecture; and
could be similar to that of the service-level and the VM-level
ones. In particular, the achieved global benefit and overhead in
our architecture tends to be better when it is possible to have more
sensitivity independent regions.

In the following, Section 2 decomposes the problem of globally
optimizing benefit in elastic cloud and presents the system model.
Section 3 specifies the logical notions of super-region and region.
Section 4 describes the physical deployment of our architecture
and the components. Section 5 reports on the evaluation and
analysis of experimental results. Section 6 and 7 discuss related
work and present the conclusion respectively.

2. MODEL AND PROBLEM ANALYSIS
In this section, we present our assumptions and the models used

for analyzing the problem.

2.1 Cloud System Model
We assume that cloud-based applications are composed of one

or more services, each with its QoS requirements and can
experience different environmental changes (e.g., changes in
workload). These services are deployed on a cloud software stack,
which can be setup using various configurations and tactics. In
addition, they are hosted on the cloud infrastructure, where
resources are shared via VMs. As a result, the control knobs and
environmental conditions could significantly influences their
QoSs. In distributed environment like cloud, each tier in a multi-
tiers application, composed of concrete services {S1, S2, … Si}
may have multiple replicas deployed on different VMs. The
replica of a tier running on a VM is assumed to have the replicas
of its services running on the same VM. In this work, we refer to
the replicas of concrete services as service-instances: the jth
service-instance of the ith concrete service is denoted by Sij.
Unlike existing work [e.g., 4, 14, 15], which focus on realizing
elasticity at the application and VM level, we aim to adaptively
optimize the QoS attributes and rental cost of utilizing control
knobs for each individual service-instance, considering the QoS
interferences caused by the co-located service-instances on a VM
and the co-hosted VMs on a PM.

In addition, we do not consider global resources contention
caused by shortage in cloud capacity; our architecture works for
cases where software and hardware resources tend to be available,
which is normal in a cloud environment. Henceforth, we assume
that the maximum demand of software and hardware resources for
all cloud service-instances (e.g., according to their budget) should
be satisfied by the capability of the cloud provider. Under such
assumption, we eliminate extreme cases where the capacity of
cloud provider reaches its limits causing likely global resources
contention. This is because the increasing demand of each service-
instance would eventually be satisfied by scale up/out as long as
the cost does not exceed the budget. We believe this is a
reasonable assumption as in realistic scenarios, proper admission
control can be applied to restrict the number of cloud-based
service-instances. Moreover, in case where the cloud provider
actually encounters capacity shortage, the unsatisfied services can
be switched to an alternative provider via a cloud selection
mechanism, which presumably hold our assumption. However, the
design of admission control and selection mechanism is outside
the scope of this paper.

2.2 Cloud Primitives
We advocate a fine-grained approach to the modeling of QoS.

To achieve this, we decompose the notion of primitives into two
major categories: these are Environmental Primitives (EP) and

Figure 2. The cloud primitives.

Control Primitives (CP). We posit that CP can be either software
or hardware, which could be managed by cloud providers to
support QoS provisioning. In particular, software CPs are software
tactics and configurations; such as the number of threads in
thread pool and its life time, the number of connections in
database connection pool, security and load balancing policies etc.
Whereas, hardware CPs are computational resources provisioning,
such as CPU, memory and bandwidth. As shown in Figure 2,
software and hardware control primitives rely on the PaaS and
IaaS layers respectively. In particular, it is a non-trivial task to
consider software CPs when QoS modeling in the cloud as they
tend to influence QoSs significantly [6]. On the other hand, we
look at EPs in the context of highly dynamic scenarios, which
reflect the cloud setting. The EPs can significantly influence the
QoS. The cloud providers often can not predict and fully control
their behavior. Examples include unbounded workload and
unpredictable bound received data etc. If the cloud provider would
be able to predict and control the presence of these scenarios,
these can be then considered as CPs.

2.3 Problem Models and Objective
We formulate an “online” QoS model, which captures both

dynamic sensitivity and interference with respect to the selected
primitives over time. The model at given sampling interval t is
formally expressed as:

QoS k
ij (t)= f (SP k

ij (t) , δ) (1)

where QoS k
ij(t) is the average value of kth QoS of Sij at interval

t. f is the QoS function, which dynamically changes at runtime. δ
refers to any other inputs that are required by the algorithm to
train f apart from the primitives. Examples of other inputs may
include historical QoS values and tuning variables. To handle QoS
interferences, we denote the input SP k

ij(t) of Eq. 1 as the selected
primitives matrix of QoS k

ij (t) at interval t. This matrix contains
the selected primitive inputs of QoS k

ij (t) and it is updated online.
In this work, we dynamically update SP k

ij(t) and function f using
the QoS modeling approach described in our previous work [3].

In the context of cloud, utilizing CPs may be subject to certain
monetary cost to the service owners, therefore the total costs
model for Sij can be represented as:

Cost ij=∑
a=1

n

g (CP a
ij(t) , P a) (2)

where g is the fixed and unified cost function for each type of CP,
and n is the total number of CP type that used by service-instance
Sij to supports its QoS attributes. CPa

ij(t) is the amount of the ath
CP provision for Sij at interval t. Pa denotes the corresponding
price per unit of the ath CP. In this work, we assume that the price
of each CP type is fixed for all service providers and their service-

Influence

Service 1
Service 2

Adjust

Tomcat DBMS

Software Control Primitives

S
a
a
S

P
a
a
S

Environmental Primitives

Adjust

VM 1 VM 2

Hardware Control PrimitivesI
a
a
S

87

instances. It is worth noting that the hardware CPs (e.g., CPU and
memory) can be only provisioned for each VM whereas the cost
model is per-service based, thus the price of a hardware CP should
be equally proportioned to each of the service-instances deployed
on the provisioned VM.

To achieve globally-optimal benefit in elastic cloud, our
architecture aims at adaptively and dynamically determine and
scale to the CP configurations, which supports the best of all QoS
attributes (Eq. 1) with minimal costs (Eq. 2) for all service-
instances in the cloud. In this work, we apply a linear weighted-
sum aggregation to express the global benefit for QoS attributes
and costs of different service-instances in the cloud. Formally, at
any given interval t, we aim to optimize the global objective by
maximizing the function in Eq. 3.

∑
i=1

n

∑
j=1

m

w' ij⋅(∑
a

l

wa⋅QoS a
ij (t)−∑

b

r

wb⋅QoSb
ij(t)−w(l+ r+1)⋅Cost ij) (3)

where n and m are the total number of services and their instances
in the cloud; w'ij is the weight for each service-instance. Because
the global objective is to maximize Eq. 3, we need to carefully
place the maximized QoS (e.g., throughput) and the minimized
ones (e.g., response time); thus l and r are the total number of the
maximized and minimized QoS for Sij respectively; wa, wb and
w(l+r+1) are refer to the corresponding weight of the QoS and cost
for Sij. In addition, the optimization of Eq.3 should be subject to
the constraint of budget and SLA.

It is worth noting that the purpose of this work is not to find out
the best formalization of the global benefit and its optimization
algorithms; but to evaluate the effectiveness of our symbiotic and
sensitivity-aware architecture towards reaching globally-optimal
benefit. In future work, we will look at more sophisticated
formalization (e.g., removal of the weights) of the global benefit.

3. LOGICAL VIEW OF THE
ARCHITECTURE

In the section, we explain the notions and principles behind our
architecture from a logical perspective. The practical architecture
deployment in cloud environment is demonstrated thereafter.

3.1 An Overview
Recall that our objective is to optimize the global benefit for

QoS attributes and costs of all service-instances, therefore from a
logical point of view, our basic problem entity in the cloud are
different QoS (max/min Eq. 1) and cost (min Eq. 2) objectives of
different service-instances. The objective functions of these
objectives are their corresponding QoS/cost models, the kth
objective of Sij is denoted by O k

ij . In particular, we argue that any
two objectives are either dependent (i.e., conflicted or harmonic)
or independent (i.e., an objective is neither directly/transitively
conflicted nor harmonic with another). With this in mind, we
propose a 2-phased region partitioning, where the first phase
partitions the objectives into different sensitivity independent
super-region, which defines the boundary of likely independent
objectives for the entire cloud under current deployment. The
purpose of super-region is to classify those objectives, which
might be independent for now but could become dependent to the
others as the QoS sensitivity changes. In other words, the
objectives should be partitioned into the same super-region as
long as they are likely to have objectives-dependency. In the
second phase, the objectives within each super-region are further
partitioned into smaller sensitivity independent regions where the
local optimization takes place. By sensitivity independent regions,
we refer to the case where any objective from a region is currently

Figure 3. Overview of the notion of super-region and region.

independent to any objective from another region at given time.
By doing so, the search space of the global objective function in
Eq.3 is partitioned into n subspaces based on sensitivity, where n
is equivalent to the number of regions. The objectives within each
subspace (still can be expressed by Eq. 3, but with smaller search
space) is optimized independently and asynchronously.

The basic principle behind our symbiotic and sensitivity-aware
cloud architecture is that, we can reach a globally-optimal benefit
by asynchronously doing local optimization for locally-optimal
benefit within different sensitivity independent regions, which
have smaller search space. The partitioning of super-region and
their regions is a dynamic online process based on the deployment
and sensitivity respectively, which are expressed by rules (we will
describe in Section 3.2 and 3.3).

In the following, we use SRi to denote the ith super-region and
Rk

i to denote the kth region of the ith super-region. The
partitioning should follow the constraints below:

Constraint 1: ∀(Ra
i ∩Rb

j)=∅

Constraint 2: if (∃Oa
ij∈SRk) and (∃Ob

ij∈SR l) , then SRk=SRl

Constraint 1 means that each objective can at most belongs to
one region within a super-region. Constraint 2 indicates that all
objectives of a service-instance should belong to an identical
super-region. However, these objectives might belong to different
regions within such super-region. The logical view of our 2-
phased region principle in the cloud is shown in Figure 3 where
we assume a simple scenario consists of 3 PMs, 4 VMs and 6
service-instances with various QoS/cost objectives. The two red
cycles represent two super-regions. Different colors on the
objective entities express different regions within those two super-
regions. In addition, there is a functional dependency between S41

and S31, which means that S41 requires the invocation of S31 to
complete its service.

3.2 Super-Regions
Objectives in the entire cloud can be partitioned to different

super-regions. Each of the super-region contains the objectives of
service-instances that are likely to be directly or transitively
dependent. The partitioning rule of super-regions is specified as:

Rule 1: Given S ab ,S cd and ∀O i
cd ∈SRk , then(∀O j

ab of Sab)
belongs to SRk if :

1) Sab and Scd are deployed on the same VM/PM, or
2) Sab has direct functional dependency on Scd, or
3) Scd has direct functional dependency on Sab .

O1
11

O2
11

O3
11 O 2

21

O2
32 O2

12

O2
41

O3
31

O 1
21 O1

32 O1
12

O 1
41

O1
31

O2
31

S 11 S 21 S 32 S 12 S 41 S 31

PM3

VM VMVM VM

PM2PM1

VM

S 42

O 1
42

O 2
42

Functional
dependency

88

Rule 1 assumes that given arbitrary service-instances Sab and
Scd. It also assume that the objectives of Scd are in the super-region
SRk. Under these assumptions, objectives of Sab are said to belong
to SRk if and only if it follows any of the above three conditions
(either directly or transitively).

Consider the scenario in Figure 3 as an example. The objectives
on PM1 are assigned to the same super-region because they
satisfy condition 1 in Rule 1. On the other hand, the objectives on
PM2 and PM3 form another super-region as they satisfy all the
conditions. In particular, the objectives of S12 and S31 are within
the same super-region even they do not directly satisfy any of the
conditions. This is because S41 functionally depends on S31 , thus
they satisfy condition 2. In addition, S41 and S12 satisfy condition 1.
As a result, the S12 and S31 transitively satisfy the conditions in
Rule 1 via S41.

Given the assumption that shortage in cloud capacity is beyond
our concerns, the partition rule of super-regions are designed
based on the fact that the objectives of a service-instance and its
functionally dependent service-instances are very likely be
dependent under some scenarios (e.g., sequential interaction). In
addition, the likely QoS interference can only be caused by the co-
located service-instances on a VM and the co-hosted VMs on a
PM. Therefore, the objectives from any service-instances that do
not directly or transitively satisfy Rule 1 can be optimized
independently as they would have no way to influence each
others.

The partitioning of super-region could change at runtime due to
the dynamic cloud environment. The super-regions would be re-
partitioned according to Rule 1 upon deployment changes, for
example: VM migration/replication, PM boots-up/shutdown and
changes in service compositions etc.

3.3 Regions
Within each super-region, we further partition the objectives

into different sensitivity independent regions, where a local
optimization algorithm is running. The partitioning of regions
could be triggered upon symptoms described in Section 4. The
aim is to further narrow down the number of dependent objectives
according to their current sensitivity at a given time. Therefore,
the partition Rule 2 of regions are designed based on the
sensitivity of QoS and cost models presented in Section 2:
 Rule 2: Within a super-region SRl, given Oi

cd and ∃O j
ab∈R k

l ,
then Oi

cd∈Rk
l if O i

cd has inputs in common to O j
ab .

Concretely, Rule 2 expresses that an objective should belongs to
a region Rk

l if and only if it has at least one identical primitive

input to one or more objectives from Rk
l (meaning that they are

dependent and have overlapping sensitivity). If two objectives
have neither common inputs themselves nor common inputs to the
same intermediate objectives, they are said to be independent
during optimization.

Using the scenario in Figure 3 as an example. There are two
regions within the left super-region; this is because the objectives
of S11, S21 and S42 use certain identical primitives inputs. On the
other hand, the objectives of S32 is in an alternative region because
it is insensitive to and has no identical inputs to any of those
objectives from S11 and S21 as it suffers limited QoS interference on
the co-located services. In particular, suppose that O2

11 has
identical inputs to O1

21 and O1
11 ; O1

11 and O1
21 do not directly

satisfy Rule 2. However, all of these 3 objectives are put in the
same region because O1

11 and O1
21 are transitively satisfy Rule 2

via O2
11 . Similar scenario occurs in the right super-region. In

addition, we can see that even O1
31 , O2

31 and O3
31 are objectives

of the same service-instance, O2
31 is put in an alternative region

to that of O1
31 and O3

31 . This is a possible scenario: suppose that
O3

31 is cost objective, O1
31 and O2

31 are throughput and
consistency QoS objective respectively; it is likely that O2

31 is
only sensitive to an unique CP (e.g., ordering error), which is free
of charge and henceforth, it is independent on O1

31 and O3
31 .

Similar to the super-regions, the partitions of regions are also
subject to dynamic changes. However, region portioning is likely
to change more frequently than that of the super-region. This is
because it requires updates when changes in QoS sensitivity tend
to be significant. Examples of significant QoS sensitivity changes
could include scenarios, where QoS is becoming sensitive to a
new primitive or insensitive to an existing primitive. Insignificant
changes on how the primitives correlate with QoS can not trigger
re-partitioning of the regions.

4. ARCHITECTURE AND
COMPONENTS

In this section, we specify the deployment of architecture and
we detail its components.

4.1 The Bio-directional Adaptation in
Symbiotic Loop

The physical deployment of architecture is shown in Figure 4.
As we can see that the architecture is deployed as distributed
instances, each of which running on a separate VM (e.g., Dom0 on
Xen [7]) on every PM in the cloud. In particular, for each
instance, we adopt a decentralized MAPE style. Unlike the
traditional realization of MAPE, our architecture adapts symbiotic
loop to enable bio-directional adaptation in the sense that: 1) it
does not only allow the MAPE to monitor and manage the
service-instances by dynamically search an elastic strategy for
globally-optimal benefit upon symptoms. 2) It also adaptively
consolidates itself with the up-to-dated context information by
dynamically re-partitioning the super-regions and regions. Such
consolidation is realized in the extended Adaptor component. In
addition, the architecture can trigger adaptations in both proactive
and reactive manners. In our prototype, the communication
amongst instances from different PMs is realized by Group
Communication Service (GMS) [16], which supports fast and
reliable multicast protocols.

The workflow of bio-directional adaptation has been shown in
Figure 4. More precisely, the sensor on each PM collects the data
(e.g., QoS values, CP usages and EP values) from the underlying
VMs and service-instances; and possibly from other PMs due to
functional dependency (step 1). In addition, the sensor could sense
deployment changes and QoS sensitivity changes from other PMs.
Next in step 2, the sensor passes raw information it received to the
Monitor (denoted by M) for normalizing the data. At step 3, the
Analyzer (denoted by A) receives both current and historical data
after normalization, this data is used by QoS modeler to build QoS
models (step 3.1). The QoS models, cost models and the related
detected changes are transiting to the Adaptor via step 4. The
partitioning of super-region/region and/or adaptation can be
triggered if one or more of the following symptoms is detected:

• Symptoms 1: Proactively detect if the QoS of a service-
instance is likely to violate SLA constraint by using the
QoS models.

• Symptoms 2: Reactively detect if the QoS of a service-
instance has violated its SLA constraint and/or if the
utilization of a CP has violated the constraint.

89

• Symptoms 3: Significant changes in the QoS sensitivity
of the objectives in a managed region.

• Symptoms 4: Deployment changes occur in a managed
super-region.

Symptoms 1 and 2 would trigger the elastic adaptation of the
managed service-instance(s); whereas, symptoms 3 and 4 require
the architecture to adapt itself by re-partitioning the super-regions
and/or regions. In particular, to prevent the problem of triggering
elastic adaptation too frequently, symptoms 1 and 2 are valid only
if the leap time after the previous adaptation for the affected
service-instances is more than a threshold t. Once we reach the
Adaptor component, the changes in symptoms 3 and 4 would be
addressed separately in a hierarchical stack. Concretely, Super-
Region Control component manages symptom 4 and maintains the
super-region on to its PM (step 4.1) as only one super-region
exists on a PM according to Rule 1. In the lower stack, Region
Control component manages the regions within the
aforementioned super-region (step 4.2 and 4.3) according to Rule
2; it aims to cope with symptom 3. Additionally, it could be
triggered by symptom 4 as the partition of a super-region might
change. Once both symptoms 3 and/or 4 are resolved, the
propagation goes to the Planner component (denoted by P) where
the Autoscaler component within each region is designed to
address symptoms 1 and 2. This can be done through dynamically
searching the best adaptation strategies toward the locally-optimal
benefit of region, using the QoS and cost models (step 4.4). In
particular, the autoscaler of each regions is triggered
independently and asynchronously. There are cases where a region
might be associated with multiple PMs (we will explain this in
Section 4.5). Therefore in order to ensure that each region is
optimized on one PM; the autoscaler can be activated only if the
leader of those PMs confirm that the region is not currently being
optimized on any other PMs. These processes are expressed as
step 4.5 and 4.6.

Once the elastic strategy is determined, the process proceeds to
the Executor(s) (denoted by E) via step 5. In particular, E is
responsible for determining which concrete actions (e.g., scale
up/down, in/out and/or VM migration and replication etc) need to
be taken in order to fulfill the elastic strategy. In this work, we
consider both vertical and horizontal scaling and apply a simple
solution to determine the actions, this is: we always try vertical
scaling (i.e., scale up/down) first before horizontal scaling (i.e.,
scale out/in). This is because horizontal scaling is usually more
expensive than vertical scaling. As for the VM migration/
replication decision, we always choose the one that result in
smaller overhead based on a predefined VM profiling pattern.
Finally, the actions are taken by the actuator via step 6 and 7.

4.2 QoS Modeler
The QoS models are dynamically constructed within QoS

modeler component using our previous work [3]. In particular, the
modeling is an online and continuous process, which captures the
dynamic QoS sensitivity of the underlying service-instance. Each
PM has a dedicated QoS modeler to update the QoS models for all
service-instances deployed on the VMs, which hosted on the said
PM. In this work, we simply make use of the resulted models to
search the best elastic strategy and to determine the partitions of
regions within each super-region in the Planer component.

4.3 Super-Region Control
Super-Region Control is designed to manage the partitioning of

super-regions in the cloud and it aims to cope with symptom 4. In
particular, the dedicated super-region control on each PM only
maintains one super-region. As a result, each PM only shares

Figure 4. Overview of the architecture deployment.

partial view of the entire super-region partitions in cloud. To
determine re-partitioning following deployment changes, each
PM share a global knowledge of the deployment dependency
(i.e., service-instance to VM mapping, VM to PM mapping and
the functional dependency of service-instances). The initial
partitions can be easily setup by the cloud administrator using the
rules mentioned in Section 3. When deployment changes occur
(symptom 4), each super-region control updates the global
knowledge of deployment dependency; and its super-region
according to Rule 1. As mentioned, the communication amongst
PMs is realized by GMS, thus the PM where the deployment
changes are taken place would notify the other PMs..

It is possible that two or more super-region controls maintain
the same super-region. Recall the scenario in Figure 3, the right
super-region would be maintained by both PM2 and PM3 as both
PM owns objectives, which belong to the same super-region.
However, the super-region controls on both PMs only need to
asynchronously maintain an identical view of super-region, and
make sure their view is consistent when deployment changes
occur. Henceforth there is no extra overhead caused by constantly
reaching consensus.

4.4 Region Control
When the necessary re-partition of super-regions is completed,

Region Control is responsible for managing the partitions of
multiple regions within a super-region; it aims to cope with
symptom 3. However, it should be triggered if symptom 4 is
detected since the partition of super-region might change. As there
is only one super-region on each PM, the regions within super-
regions are managed by a dedicated region control. In particular,
the region control keeps track on the models of the managed
objectives. Specifically, at the end of each model update intervals,
the region control would examine whether any deployment and/or
significant QoS sensitivity changes occur in the managed super-
region and regions. If this is the case, it then re-partitions the
objectives to regions within the corresponding super-region,
according to Rule 2.

 It is possible that two or more region controls maintain the
same regions. As shown in Figure 3, the region of O1

41 , O2
41 ,

O1
31 and O3

31 cover both PM2 and PM3, thus this region is
maintained on both PMs. In this case, the region control only
required to keep an identical view of the said region and ensure
the related QoS models are updated.

Sensor Actuator

(E)(M)

QoS
Modeler

Region1
i

Autoscaler
Region j

i

Autoscaler

(P)

Instance1

Instance2 Instance k

Super Region Control

Region Control

VM VM VM

...

......

...

1

2

3

4

4.2 4.4

4.1

4.3

4.5

4.6
5

6

7

3.1

(A)

(Adaptor)

(PM) (PM)

(PM)

90

Table 1. Initial deployments and the examined
objectives/primitives

PM VM Service-
instance

Objectives Software
CP

Hardware
CP

EP

PM1

VM

S11 Throughput
and cost

The max
threads

CPU and
Memory

workload

S21 Throughput
and cost

The max
threads

workload

VM

S31 Throughput
and cost

The max
threads

CPU and
Memory

workload

S41 Throughput
and cost

The max
threads

workload

PM2 VM

S12 Throughput
and cost

The max
threads

CPU and
Memory

workload

S51 Throughput
and cost

The max
threads

workload

PM3 VM

S32 Throughput
and cost

The max
threads

CPU and
Memory

workload

S61 Throughput
and cost

The max
threads

workload

4.5 Autoscaler of Region
Once the partitions of both super-region and region are

completed, the autoscaler of each region would be in a functional
stage to trigger local optimization for searching an elastic strategy.
In particular, the autoscaler aims to cope with symptoms 1 and 2.
It is possible that, the region control on different PMs manage the
same region as mentioned in Section 4.4. To prevent the same
region from being optimized on more than one PM, we elect a
leader for each group of PMs that manage the same region. More
precisely, upon the occurrence of symptoms 1 or 2, the autoscaler
of the corresponding region firstly queries the leader regarding
whether the region, which the affected objective belongs to, is
currently under optimization. If it is not the case, it will then
trigger local optimizations; otherwise, the process should be
aborted. Leader would be notified once the local optimization and
the corresponding actuations are completed. In our preliminary
prototype, we elect the oldest PM as the leader of each group.

5. EXPERIMENTAL EVALUATION
To evaluate global benefit of the elastic strategies produced by

our architecture and the overhead for reaching these strategies, we
have conducted an experimental evaluation. In particular, we have
implemented the architecture prototype using Java JDK1.6, and
we assessed the elastic scaling of 8 hypothetical cloud-based
service-instances under the control of our architecture prototype.
In the experiment setup, each service-instance was deployed on
software stack including Apache, Tomcat and MySQL. We
simulate a synthetical workload to each service-instance. The
workload has been designed in a way that the intensity was
sufficient for causing QoS interference on the co-located services
and co-hosted VMs. The testbed is a private cloud, where PMs are
connected by Gigabit Ethernet and a switch. Xen [7] is used as the
underlying hypervisor. The initial deployment and the considered
CP/EP of our experiments are shown on Table 1. The scale of each
CP and their corresponding prices are specified in Table 2.

We compare our symbiotic and sensitivity-aware architecture
(we simply refer to as sensitivity-aware architecture in the
following sections) to other 4 architectural styles that do not cater
for sensitivity. Each of the 4 architectures assumes different fixed
region granularities: service-level, VM-level, PM-level and cloud-
level architectures. Because these 4 styles do not consider
symptoms 3 and 4; they trigger elastic adaptation only when

Table 2. Scaling options and price of control primitives
CP Optional Values Unit Price

Max
Threads

5,10,15,20,25,30,35,40,45,50 Thread
count

$0.8 for each 5
unit per hr

CPU 1, 2,3, 4,5,6, 7, 8 Compute
Unit

$2.5 for each 1
unit per hr

Memory 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0
.9,1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,

1.8,1.9,2

GB $1.5 for each
0.1 unit per hr

 Table 3. Number of regions for each architecture under
different setups of service-instances

Setup

Number of regions

symbiotic and
sensitivity-aware

cloud-
level

PM-
level

VM-
level

service-
level

2 service-instances maximum of 1 1 1 1 2

4 service-instances maximum of 1 1 1 2 4

6 service-instances maximum of 3 1 2 3 6

8 service-instances maximum of 4 1 3 4 8

symptoms 1 and/or 2 are detected.
For simplicity, we assume that each service-instance has only

one QoS requirement, which is throughput and one predefined
cost model. To optimize the global objective function in Eq.3 , we
apply random optimization algorithm with the same number of
iterations for each architecture. This is because exhaustive
algorithms might not be able to produce a decision efficiently due
to the large number of possible elastic strategies. In addition, we
assume that these service-instances and their QoS/cost are
equivalently important and thus all weights in the global objective
function are set to 1.

5.1 The Global Benefit
To examine the global benefit of the elastic strategies produced

by our symbiotic and sensitivity-aware architecture, we run 4, 6
and 8 service-instances setups separately for 100 sampling
intervals. For each of the setup, we collect the quality of global
benefit for each elasticity strategy made during the period. The
purpose of the different setups is to examine the sensitivity of our
architecture to the total number of objectives in cloud. Under each
setup, we have performed independent runs for each of the five
architectures. The global benefit is measured by score, which is
the average result calculated by Eq.3 for the interval after a
previous elasticity decision point and before the next one. Each of
these intervals is referred to as effect point. Table 3 illustrates the
number of regions for each architecture, which was observed
during the experiments. It is worth noting that unlike the other
architecture, the number of regions in our symbiotic and
sensitivity-aware architecture is subject to dynamic change.
Therefore, the number for our architecture shown in Table 3 is the
maximum observed partitions of regions.

Figure 5-7 illustrate the results of the global benefit score (y-
axis) in relation to each effect point (x-axis). Precisely, Figure 5
shows the global benefit of our architecture in contrast to the other
4 styles using setup for service-instances S11, S21 , S31 and S41. As
we can see that the differences in global benefit for the sensitivity-
aware, the PM-level and the cloud-level architecture are marginal.
This is because they partition all the objectives of these 4 service-
instances within the same region. Therefore, they perform the
same under such case. In contrast, the service-level and the VM-
level architecture achieve much worse global benefit following

91

Figure 5. Global-benefit in case of 4 service-instances.

Figure 6. Global-benefit in case of 6 service-instances.

Figure 7. Global-benefit in case of 8 service-instances.

the elastic adaptation. This is due to incorrect partitioning of the
regions as they ignore the sensitivity caused by QoS interferences
on co-located services and co-hosted VMs, which are significant
in our experiments. Figure 6 considers two more service-instances
(S12 and S51) in addition to the ones of Figure 5. We can see that
the service-level and the VM-level architecture performs worse
than the other three due to the same reason as the previous case.
Surprisingly, although our architecture (at most 3 regions)
partitions more regions than that of the cloud-level one, its global
benefit is better than that of the cloud-level one. We believe that
this is because we apply random algorithm in the optimization and
our architecture is able to properly partition the objectives into
more regions. This implies that optimizing locally and
asynchronously on each sensitivity independent region could

result in emergent global benefit using probabilistic algorithms.
The PM-level (2 regions) architecture, on the other hand also
performs better than that of the cloud-level one. We believe that
this is because it partitions the objectives per-PM, which similar to
the partitions produced by our architecture and thus meets the
actual sensitivity in the experiments by chance. The sensitivity-
aware architecture performs similarly in contrast to the PM-level
architecture. This is because they produce similar partitions of
regions. The only difference is that our sensitivity-aware
architecture produces one extra region (we observe only 2
objectives within such region), which is not significant enough to
produce emergently better results. However, in the next section we
will show that our architecture produces much smaller overhead
than that of the PM-level one.

92

Finally, Figure 7 illustrates the global benefit for all 8 service-
instances. We can see that the service-level and the VM-level
architecture produce the worst results. The gap between their
results to the other three is larger than Figure 5 and 6. This is due
to the fact that they has incorrectly partitioned the regions when
introducing more service-instances, and henceforth affecting the
global benefit more seriously. Similar to the case of Figure 6, our
sensitivity-aware architecture performs slightly better than that of
the cloud-level one. The PM-level architecture performs similar to
our architecture for the reasons previously explained.

In summary, the elastic adaptations of our symbiotic and
sensitivity-aware architecture produces much better global benefit
than the service-level and the VM-level architecture under the
presence of QoS interferences. In addition, the global benefit
produced by our architecture are slightly better than that of the
cloud-level architecture and similar to the PM-level architecture.
We observe that the improvement in global benefit tend to be
better when having more sensitivity independent regions. In
addition, we believe that our architecture could outperform the
PM-level one when the number of QoS attributes and/or the
number of services on each PM increase.

5.2 The Overhead for Reaching Elastic
Strategy

To evaluate the overhead for reaching an elastic strategy, we
compare the average time taken in the optimization processes of
the symbiotic and sensitivity-aware architecture to the other 4
styles, under the setup of 2, 4, 6 and 8 service-instances. In
particular, the average time is calculated based on the time taken
for reaching all the elasticity strategies within the entire
experiment run. As shown in Figure 8, which reveals the overhead
(y-axis) in relation to the number of service-instances (x-axis),
we can see that in case of 2 service-instances (S11 and S21), the
service-level architecture produces the smallest overhead. This is
because it performs optimization and reaches a strategy for each
service-instance independently. The remaining architectures, on
the other hand, produce similar overhead because all the service-
instances exist on a single VM.

In the case of 4 service-instances (S11, S21 , S31 and S41), the
differences among the sensitivity-aware architecture, the PM-level
and the cloud-level architectures are marginal. They tend to result
in bigger overhead than that of the service-level and VM-level
ones. This is because the sensitivity-aware architecture and the
PM-level one only results in one region; they are actually the
same as the cloud-level architecture. In contrast, the service-level
and the VM-level style are unaffected by the increasing number of
service-instances. In particular, the VM-level architecture produce
bigger overhead than that of the service-level one but better than
the other three. This is attributed to the fact that it optimizes per-
VM, which is coarser-level than the service-level style. As
expected, in case of 6 (S12 and S51 in addition to the case of 4) and
8 service-instances, the overhead of the sensitivity-aware
architecture and the PM-level one is becoming better than that of
the cloud-level one. This is because our architecture and the PM-
level style tend to produce more regions (as shown in Table 3),
which implies that it is able to asynchronously search within a
smaller search space for each region with less complexity in
contrast to the cloud-level one. On the other hand, the service-
level and the VM-level styles remain unaffected. However, we can
see that our architecture perform similar to the VM-level style and
only slightly worse than the service-level style. In contrast to the
PM-level style, our sensitivity-aware architecture still performs
better. This is attributed to the fact that we further allow
partitioning within a PM. Consequently, this result in one more

Figure 8. Overhead under different numbers of service-
instances.

regions and thus the search space is further reduced. We can see
that even with only one more region, the achieved overhead of our
architecture gains considerable improvement. We believe that
such improvement can be amplified when it is possible to partition
more regions.

Interestingly, we can see that unlike the overhead for cloud-
level architecture, which increases linearly; the overhead of our
sensitivity-aware architecture and the PM-level architecture
increase from the cases of 2 to 4 service-instances. They can drop
again from the cases of 4 to 6 and remain stable for the case of 8
service-instances. This is because both architectures determine
that only one region is allowed for the case of 2 and 4 service-
instances. Therefore, it is the same as the cloud-level one and the
overhead could also increase in a similar way. When 6 and 8
service-instances exist, both architectural styles result in more
than one region. Henceforth, the average result of overhead tends
be smaller than previous cases, as there are numbers of elasticity
decisions made for a region with smaller search spaces than the
single region in case of 2 and 4 service-instances.

To conclude, our symbiotic and sensitivity-aware architecture is
able to achieve smaller overhead in contrast to the cloud-level and
the PM-level architecture as the number of region increases. The
overhead of our architecture is close to that of the service-level
and the VM-level style. However, we can observe from Section
5.1 that the achieved global benefit are significantly better than
these two. In addition, the experiments reveal that the overhead of
our architecture is sensitive to the number of partitioned regions.
In particular, the more sensitivity independent regions are
partitioned, the smaller overhead is realized.

6. RELATED WORK
The increasing complexity of the elastic management of

applications in the cloud urges the need for self-adaptive
solutions. Most of the recent research on architecture for self-
adaptive cloud rely on classic MAPE, and assume fixed region
granularity when partitioning and optimizing for QoS/cost
objectives. Up to our knowledge, none of the existing solutions
pursue partitioning to optimize for QoS and cost in the cloud
based on sensitivity. Our previous work [17] is the first attempt to
conceptually capture the requirements for sensitivity-aware
architecture in the cloud.

Cloud-level architecture could assume either centralized or
decentralized deployment. The elastic strategy tends to be selected
by taking the objectives of all cloud-based services into account.
[8] propose a cost-optimized, hierarchical architecture that select
elastic strategy from the lowest layer in the hierarchy. These

93

strategies are then combined and the final decision is made in a
cloud level controller. [9] present a framework for optimizing
benefit of all cloud-based services. Their approach optimizes for
benefit. The limitation in cloud-level architectures is that the
overhead heavily relies on the number of service and the possible
elastic strategies to select. As a result, the consensus in decision
making could easily become bottleneck. Sensitivity-aware
solutions with dynamic region granularity has the potentials to
efficiently reach the right strategy and consequently improve
adaptation.

On the other extreme, service-level architecture is proposed as
they optimize the objectives for each cloud-based service
independently with ignorable overhead. [10] propose OPTIMIS, a
toolkit for managing cloud-based service using fixed elastic rules.
Their approach is cost-optimized and they only assume horizontal
scaling of VM, however. [11] describe a service-level architecture
for automatically controlling each cloud-based service. Unlike our
work, they do not attempt to optimize for QoS and cost. They
discuss an automatic way to enable self-adaptive cloud. In
addition, they assume limited number of elastic strategies;
whereas, we assume arbitrary combinations. The lack of these
architecture is that they might not achieve better global benefit for
all cloud-based services, as they ignore QoS interference.

The VM-level [12, 13] and PM-level [14, 15] architecture result
in acceptable balance between globally-optimal benefit and
overhead. In particular, although approaches like [13] aim for per-
application, they only assume one application per-VM. Thus, it
can be categorized as VM-level architecture. The approach
proposed by [12] aim for benefit, however. Unlike our work, they
only focus on locally-optimal benefit on each VM. In addition,
their QoS modeling rely on static and offline approaches.[13]
propose a framework for SLA enactment in the cloud, they have
also considered the objective dependency. Nevertheless, they only
aim for the fundamental objective-dependency (e.g, throughput
and cost per-VM) and do not take the objective-dependency
caused by QoS interference into account; our architecture covers
both, however. [14] report on a model predictive control based
approach for elasticity in self-adaptive cloud. They do not intend
to take QoS interference into account, however. The approach
proposed by [4] has particularly catered for the interference
caused by co-hosted VMs. They rely on local optimization per
VM. The architecture of [15] assume that hybrid and fixed region
granularity; they provide a QoS-optimized architecture for
optimization in the cloud based on feedback adaptive loops. In
addition, they claim that VM-level architecture should be used for
SaaS whereas PM-level one for IaaS and a hybrid one for PaaS.

Unlike the aforementioned work, our architecture reaches better
balance between global benefit and overhead by dynamically
partitioning the objectives into sensitivity independent regions.
We adapt symbiotic loop to realize such. In addition, we assume
arbitrary combinations of elastic strategies. In particular, the
architecture caters for QoS interference caused by co-located
service-instances and co-hosted VMs.

7. CONCLUSION AND FUTURE WORK
We have proposed a symbiotic and sensitivity-aware

architecture for dynamically guaranteeing globally-optimal
benefit in elastic cloud. In particular, we apply symbiotic feedback
loops to the architecture: the architecture is not only able to
monitor and adapt better elastic adaptation strategies to the
managed services, but also able to adaptively consolidate its
sensitivity awareness by re-partitioning the regions for more
efficient and effective decision making. Experimentally, we have

evaluated our architecture with respect to global benefit achieved
by the produced elastic adaptation strategies and the overhead to
reach these strategies. We compare the results to other 4 non-
sensitivity-aware architectural styles. The results reveal that our
architecture produces similar global benefit to the PM-level
architecture, and better than other non sensitivity-aware
architectures. On the other hand, it produces smaller overhead
than the cloud-level and the PM-level architecture; and could be
similar to that of the service-level and the VM-level ones. The
improvement on global benefit and overhead tends to amplify
when it is possible to have more regions. In future work, we will
focus on the design of more sophisticated formalization of the
global objective function. We will also investigate the other
optimization algorithms within the proposed architecture.

8. REFERENCES
[1] Google App Engine, http://code.google.com/appengine/
[2] Amazon Elastic Compute Cloud,http://aws.amazon.com/ec2/
[3] T. Chen and R. Bahsoon "Self-adaptive and sensitivity-aware

QoS modeling for the cloud," in Proc. of the 8th International
Symposium on Software Engineering for Adaptive and Self-
Managing Systems, pp. 43 –52, May 2013.

[4] CZ. Xu, J. Rao, and X. Bu,. "URL: A unified reinforcement
learning approach for autonomic cloud management."
Journal of Parallel and Distributed Computing, vol. 72, no. 2,
pp. 95-105, 2012.

[5] G. Galante, and LCE. Bona. "A survey on cloud computing
elasticity." Utility and Cloud Computing (UCC), 2012.

[6] J.Li, et al, "Profit-based experimental analysis of IaaS cloud
performance: impact of software resource allocation," In
Proc. of Conference on Service Computing, 2012.

[7] Xen: a virtual machine monitor, http://xen.xensource.com/.
[8] M. Kesavan, et al. "Practical Compute Capacity Management

for Virtualized Datacenters." IEEE Transaction on Cloud
Computing, vol. 1, no. 1, 2013.

[9] JZ. Li, et al. "CloudOpt: multi-goal optimization of
application deployments across a cloud." Proceedings of the
7th International Conference on Network and Services
Management. International Federation for Information
Processing, 2011.

[10] AJ. Ferrer, et al. "OPTIMIS: A holistic approach to cloud
service provisioning." Future Generation Computer Systems,
vol. 28, no. 1 pp. 66-77, 2012.

[11] J. Kirschnick, JM. Alcaraz Calero, and N. Edwards. "Toward
an architecture for the automated provisioning of cloud
services." Communications Magazine, IEEE, vol.48, no. 12
pp. 124-131, 2010.

[12] H. Wu, et al. "A benefit-aware on-demand provisioning
approach for multi-tier applications in cloud computing."
Frontiers of Computer Science, 2013.

[13] M. Maurer, I. Brandic, and R. Sakellariou. "Self-adaptive and
resource-efficient sla enactment for cloud computing
infrastructures." IEEE Cloud Computing (CLOUD), 2012.

[14] H. Ghanbari, et al. "Optimal autoscaling in a IaaS cloud."
Proceedings of the 9th international conference on
Autonomic computing. ACM, 2012.

[15] M. Litoiu, et al. "A business driven cloud optimization
architecture." Proceedings of the 2010 ACM Symposium on
Applied Computing, 2010.

[16] JGroup: A Toolkit for Reliable Multicast Communication,
http://www.jgroups.org

[17] T. Chen, R. Bahsoon, and G. Theodoropoulos. Dynamic QoS
Optimization Architecture for Cloud-based DDDAS.
Procedia Computer Science, 2013.

94

