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Abstract

Context: Search-Based Software Engineering, in particular multi-objective
evolutionary algorithm, is a promising approach to engineering software ser-
vice composition while simultaneously optimizing multiple conflicting Quality-
of-Service (QoS) objectives. Yet, existing applications of evolutionary algo-
rithms have failed to consider domain knowledge about the problem into the
optimization, which is a perhaps obvious but challenging task.

Objective: This paper aims to investigate different strategies of ex-
ploring and injecting knowledge about the problem into the Multi-Objective
Evolutionary Algorithm (MOEA) by seeding. Further, we investigate various
factors that contribute to the effectiveness of seeding, including the number
of seeds, the importance of crossover operation and the similarity of historical
problems.

Method: We conduced empirical evaluations with NSGA-II, MOEA/D
and IBEA based on a wide spectrum of problem instances, including 10
different workflow structures, from 5 to 100 abstract services and 510 to 5.529
×10203 candidate concrete services with diverse QoS on latency, throughput
and cost, which was chosen from the real-world WS-DREAM dataset that
contains 4,500 QoS values.

Results: We found that, (i) all seeding strategies generally outperform
their non-seeded counterparts under the same search budget with large sta-
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tistical significance. Yet, they may involve relatively smaller compromise
on one or two of the quality aspects among convergence, uniformity and
spread. (ii) The implication of the number of seeds on the service composi-
tion problems is minimal in general (except for IBEA). (iii) In contrast to the
non-seeded counterparts, the seeding strategies suffer much less implications
by the crossover operation. (iv) The differences of historical problems, which
are important for two proposed seeding strategies, can indeed affect the re-
sults in a non-linear manner; however, the results are still greatly better than
the non-seeded counterparts even with up to 90% difference of the problem
settings.

Conclusion: The paper concludes that (i) When applying the seeding
strategies, the number of seeds to be placed in is less important in general,
except for the pre-optimization based strategies under IBEA. (ii) Eliminat-
ing or having less crossover is harmful for multi-objective service composition
optimization, but the seeding strategies are much less sensitive to this oper-
ator than their non-seeded counterparts. (iii) For the history based seeding
strategies, the seeds do not have to come from the most similar historical
composition problem to achieve the best HV value, but a largely different
historical problem should usually be avoided, unless they are the only avail-
able seeds.

Keywords:
Service composition, search-based software engineering, multi-objective
optimization, evolutionary algorithm, seeding strategy

1. Introduction

Service oriented computing is a software engineering paradigm that allows
software application to be composed from different, seamlessly connected
services deployed over the Internet according to a given workflow [1]. Such
a software application, namely service composition, is the key to enable the
rapid realization and integration of different functionalities that are required
by the stakeholders.

However, there is often a large number of services to be chosen for fulfilling
the functional requirements, but they come with different levels on the non-
functional Quality-of-Service (QoS) attributes, e.g., latency, throughput and
cost, which are conflicting. As a result, optimizing and finding the good
service composition plans (solutions) and their trade-offs becomes a complex
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and challenging problem which is known to be NP-hard [2][3][4]. For example,
Amazon EC2 offers different services on operating systems, CPU options and
backup settings, etc, which has already resulted in around 16,991 possible
service composition plans that lead to diverse overall QoS [2]. The problem
becomes even more difficult to solve when considering a market of services,
where different parties (e.g., Amazon, Google etc) provide different services
for the same set of functionalities.

Search-Based Software Engineering (SBSE) techniques have been success-
fully applied to optimize different software engineering problems [5][6][7][8][9],
including service composition [10][2][3][11][12]. Among others, evolutionary
algorithm is one of the most promising categories of search algorithms for
many SBSE problems [2][13]. Such a population-based searcher has been
recognized as a convenient approach to deal with multi-objective problems
(termed as Multi-Objective Evolutionary Algorithms, MOEAs) as it returns a
set of composition plans, each of which achieves different trade-offs on all the
concerned QoS attributes [2][6][8]. However, when used to deal with multi-
objective problems, MOEAs typically work on a set of randomly-generated
initial candidate solutions (i.e., composition plans here), despite the common
belief that leveraging the information and knowledge of the problem for the
initialization can considerably improve the algorithms’ performance [7][5].

In this paper, we propose four alternative seeding strategies, aiming to
strengthen the search-based optimization for service composition by injecting
knowledge of the problem into MOEAs. Those strategies were designed to
prepare a set of high quality seeds as part of the initial population for an
MOEA to start working with. In particular, our contributions include:

— We propose two seeding strategies, namely AO-Seed and SO-Seed, that
rely on different forms of pre-optimization to obtain knowledge about the
problem: the former assumes weighted sum aggregation of the objectives
to obtain the seed while the latter focuses on single objective optimization
for finding the best of each concerned QoS attribute as the seeds.

— We propose another two seeding strategies named H-Seed and R-Seed that
exploit the readily optimized composition plans for historical and similar
service composition problems as the knowledge, i.e., those have the same
workflow but different sets of candidate concrete services. In particular,
H-Seed uses non-dominated sorting on historical composition plans and
the seeds are selected from the top ranked front(s) (i.e., from the non-
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dominated front). R-Seed simply selects the historical composition plans
in a random manner.

— Based on three well-known MOEAs (NSGA-II [14], MOEA/D [15] and
IBEA [16]), we conducted extensive experiments on 10 randomly gen-
erated workflow structures, ranging from 5 to 100 abstract services and
510 to 5.529 ×10203 candidate concrete services with diverse QoS val-
ues on latency, throughput and cost, as well as varying search space up
to around 3.73 × 10202 composition plans. All those compositions select
services from the widely used WS-DREAM dataset [17], which contains
QoS data monitored from 4,500 real-world concrete services. The setup
ensures a sufficiently wide spectrum of workflows and good practicality
of our evaluations. The results show that, when compared with the clas-
sic non-seeded counterparts under the same search budgets, all proposed
seeding strategies help to produce generally better composition plans, and
the overall QoS of service composition is improved quicker throughout the
evolution. Yet, they may involve relatively smaller compromise on one or
two of the quality aspects among convergence, uniformity and spread.

— We discovered that eliminating or having less crossover is harmful for
multi-objective service composition optimization. However, the seeding
strategies exhibit less sensitivity than their non-seeded counterparts.

— We found that both H-Seed and R-Seed can be affected by the degree of
differences between the current and historical service composition prob-
lems, and the seeds come from the most similar problems do not neces-
sarily lead to the best result. However, the seeding strategies are still
greatly better than their non-seeded counterparts.

— Unlike other work on seeding for software testing [7][18] in which the num-
ber of seeds were found to be an important parameter, we did not observe
significant distinction on the impact of different numbers of seeds to the
overall QoS for the service composition problem, i.e., as long as there is
good seed to start working with, how many seeds is less important. The
only exception is for AO-Seed and SO-Seed under IBEA, which severely
degrade the uniformity of the results as the number of seeds increases.
We then discovered the reason behind those is due to the fact that only
the composition plans that are the descendants of the seeds can survive in
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Figure 1: Example workflow of the service composition problem.

the final solution set. Finally, the experiments reveal acceptable running
time caused by the seeding strategies.

This work is a significant extension to our prior work [19], which is a rela-
tively preliminary version of the seeding strategies. In particular, the exten-
sions are four folds: (i) More detailed elaborations on the proposed seeding
strategies and in-depth experimental evaluations, including more MOEAs,
an extremely large workflow and more diverse set of quality indicators. (ii)
Comparing the seeding with the corresponding non-seeded counterparts un-
der the same search budget. (iii) Investigating the importance of crossover
operation during the seeded search process and (iv) exploring, for H-Seed
and R-Seed, whether the seeds have to come from the most similar historical
problem to achieve the best result.

The paper is organized as the follows: Section 2 formally describes the
service composition problem and presents the research questions. Section 3
discusses the seeded MOEA and the proposed seeding strategies in details.
Section 4 presents the experimental evaluations. Section 5, 6 and 7 discusses
the threats to validity, the related work and concludes the paper, respectively.

2. Preliminaries

2.1. Problem Formulation

The fundamental of service computing lies in the fact that a service-
oriented system can be composed from a set of seamless services, each bring-
ing different QoS values. The ultimate goal is to optimize different, and
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possibly conflicting QoS attributes for the entire service workflow. An exam-
ple has been shown in Figure 1, where there is often a predefined workflow
containing a set of abstract services, denoted as A = {a1, a2 · · · , an}, and the
connectors between them (e.g., sequence or parallel). Each of the abstract
services can be realized by a concrete service, selected from a set of function-
ally equivalent ones, each of which comes with different QoS values. Such
a set of candidate concrete services of an abstract service an is denoted as
Cn = {cn1, cn2 · · · , cnm}. The workflow and the related candidate concrete
services of each abstract service can be usually provided by existing service
brokers and the service discovery approaches [2][3], respectively. Intuitively,
our goal is to select the optimal (or near-optimal) composition plans of con-
crete services, e.g., P = {c13, c25 · · · , cn2}, that achieves the best value of each
QoS attribute. Formally, the service composition problem can be expressed
as:

argmax or argmin f1(P), f2(P) · · · , fk(P) (1)

Given

• A predefined workflow of abstract services A = {a1, a2 · · · an} and their
connectors.

• All the candidate concrete services for each of the abstract services C =
{(c11, c12 · · · , c1m1), (c21, c22 · · · , c2m2) · · · , cn1, cn2 · · · cnmn)}.

• A set of fitness functions (i.e., f1, f2, · · · , fk) for evaluating all the QoS
attributes of the service composition1, which we will elaborate in details
in Section 4.2.

It is easy to see that the problem can be reduced to a multi-objective, combi-
natorial optimization problem which, depending on the number of combina-
tions (i.e., the number of abstract services and the related concrete services),
is likely to be computationally intractable. Further, given the nature of
multi-objective and the unclear preferences between the objectives, a search
algorithm cannot produce a single composition plan, but a set of composition
plan, which of each represent a point in the trade-off surface, i.e., the Pareto
optimal front. For example, recall the case in Figure 1, an identified compo-
sition plan P = {c14, c22, c32, c48, c59} may lead to latency of 0.5s, throughput

1In this work, we consider latency, throughput and cost as the objectives; however,
more objectives can be easily appended.
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of 0.81 requests/ms and cost of $53; another plan P = {c11, c27, c36, c46, c59}
may have latency, throughput and cost as 0.1s, 4.32 requests/ms and $103,
respectively. Hence, the trade-off would be whether to favor cost or laten-
cy/throughput? Those facts mean that it could be unrealistic to use an ex-
act optimization solver (e.g., linear programming solver) and thereby urges
the use of SBSE techniques in which multi-objective metaheuristics, such as
MOEAs, play a central role.

2.2. The Concept of Seeding

Seeding the MOEAs has been proven to be an effective way to improve the
algorithms in other SBSE domains, e.g., Software Testing [7] and Software
Product Line [5].

Traditionally, MOEAs and other stochastic search algorithms used in the
SBSE community assume random starting points, e.g., a randomly generated
population. However, it is naturally make sense that if there exist some good
solutions (at least be ‘good’ in some aspects), then it would be preferable
for the algorithm to start search based on those solutions. However, it is
challenge to identify those good solutions, and, even if they can be found,
it is unsure about whether they can be really helpful for the search-based
optimization, particularly for the MOEAs.

2.3. Research Questions

In this work, we are particularly interested in understanding the effective-
ness of various ways to ‘plant seeds’ in the MOEA for the service composition
problem. Specifically, the key research question we aim to answer is:

RQ1: Whether it is possible to seed the MOEA, which improves the
overall QoS of the service composition in contrast to their non-seeded
counterparts under the same search budget?

It is worth noting that the mutation operator is a mandatory operator in
MOEA as it is able to produce new genes. In contrast, the crossover oper-
ator is deemed as optional. It has also been found that for an MOEA with
seeding strategy, crossover operation may negatively affect the performance
of the algorithm to some degree [20]. This is because in crossover opera-
tion, a substantial part of the chromosome (e.g., 50%) can change, which
may disturb good building blocks in the seed chromosomes. In fact, in evo-
lution strategy [21], a branch of evolutionary algorithms, only mutation is
performed to produce new individuals. To verify this, we ask:
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RQ2: Are the crossover operator and crossover rate important to the
seeded MOEA for optimizing service composition problems?

The four proposed seeding strategies are subject to different parameters,
such as the number of seeds. Understanding their sensitivity to those factors
is crucial and thereby, we ask:

RQ3: For H-Seed and R-Seed, do the seeds have to come from the
most similar historical composition problems in order to achieve the best
result?

RQ4: Does a higher number of seeds necessarily imply better optimiza-
tion results? What are the reasons behind the observations?

Finally, it is important to confirm that the seeding strategies are suffi-
ciently efficient to be applied in practice. To this end, we ask:

RQ5: What is the extra execution time imposed by seeding?

3. Seeded MOEA for Optimizing Service Composition

Seeded MOEA for service composition operates similarly to the classic
MOEAs, but the initial population additionally contain some selected ‘seeds
of composition plan’, representing some prior knowledge of the problem to
influence the evolutionary search. In the following, we explain the encod-
ing, the reproduction operators and the four alternative seeding strategies
proposed. Note that we have omitted the discussion of mating and environ-
mental selection, as they are often problem agnostic and algorithm dependent
(e.g., dominance-based comparison in NSGA-II [14]).

3.1. Gene Encoding

To solve the service composition problem using MOEAs, one would need
to transpose the composition plan into the chromosome representation, a
thread-like encoding, to represent the individual in MOEAs. As shown in
Figure 2, the encoding regards each gene as an abstract services, each of which
is associated with its set of candidate concrete services. Thus, the value of a
gene represents which concrete service (its index) has been selected for the
corresponding abstract service.
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Figure 2: Encoding of the service composition.

(a) Uniform crossover (b) Boundary mutation

Figure 3: The reproduction operators.

3.2. Reproduction operators

Generally in MOEA, mutation and crossover operators are both applied
to change the individuals (composition plans). As shown in Figure 3a, we
follow the uniform crossover, where two genes, each of which from a dif-
ferent parent and both are at the same position in the chromosome, might
be swapped subject to a crossover rate. The uniform crossover operator was
chosen because different genes (abstract services) may have different numbers
of candidate concrete services, and thereby such crossover operator helps to
eliminate the risk that an abstract service selects an invalid concrete service.
For mutation operator (Figure 3b), we follow boundary mutation where the
value of a gene can be randomly selected from the related set of candidate
concrete services, subject to a mutation rate.

3.3. Seeding Strategies

In this section, we specify the proposed four alternative seeding strategies
for the problem of service composition. These seeding strategies are explained
as below.
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(a) AO-Seed (b) SO-Seed

Figure 4: The AO-Seed and SO-Seed (AS denotes abstract service).

3.3.1. Pre-optimization based seeding

Two seeding strategies, i.e., AO-Seed and SO-Seed, generate seeds us-
ing pre-optimization based on different perspectives. The reason for this
is because there are readily available approaches for service composition by
optimizing a single objective or a weight sum aggregation of multiple objec-
tives [22][23][24][10].

—AO-Seed: As in Figure 4a, the seed here is generated by performing
an aggregated, single objective optimization based on approaches from the
literature. It is known that those approaches do not generate well-diversified
composition plans in contrast to the multi-objective perspective we follow
in this work [3]. However, the single composition plan resulted from those
readily available approaches may serve as useful seed to initialize an multi-
objective optimization process, as they express certain preferences to the
objectives. In general, any optimization algorithms can be applied to find
the seeds, but in this work, we applied a single-objective genetic algorithm
considering the large search space of the problem. To ensure fairness on the
objectives, we have used equal weights.

—SO-Seed: Similar to AO-Seed, the seed here is produced by conducting
single objective optimization, as in Figure 4b. However, instead of using a
weight sum aggregation, each time, we used a single objective as the sole
optimization target. As a result, this strategy would always generate n seeds
where n equals to the number of objectives. The intention behind this is
that, when initializing a multi-objective optimization process, the strong bias
toward each single objective may help to find emergent and good composition
plans that would otherwise difficult to identify. Here, again, we have used
single-objective genetic algorithm for each objective.

It is worth noting that for AO-Seed and SO-Seed, the same seed(s) is
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(a) H-Seed (b) R-Seed

Figure 5: The H-Seed and R-Seed (AS denotes abstract service).

copied to fill the required number of seeds. In particular, for SO-Seed, the
number of copies for the best composition plan of each objective needs to
be the same, e.g., suppose there are three objectives and there are a total
of 50 seeds needed, then the number of seed is reduced to 48 because it is
only possible to have at most 16 copies of the best composition plan for each
objective.

3.3.2. History based seeding

Two seeding strategies, i.e., H-Seed and R-Seed, generate seeds using the
readily available historical composition plans that were optimized for similar
problems, e.g., by an MOEA2. The motivation is that in service composi-
tion, the current problem and its nature may be easily changed due to, e.g.,
the candidate concrete services join or leave, and their QoS values are fluc-
tuated [2][3]. Since the candidate concrete services and their QoS values
change, the optimization problem in hand may be diverted as the decision
variables (and their values) have been changed, which emerges a new problem
to be solved by search-based optimization, as a result, the current composi-
tion plan for the problem may no longer be ideal and require another run of
optimization. However, the assumption is that very often, there are compo-
sition plans available for historically similar service composition problem(s)
before the changes, i.e., those with different sets of candidate concrete ser-
vices but the same workflow3. In particular, since MOEA produces a set of

2We assume that the historical problems are also optimized by MOEA as it would be
the search algorithm used for the current problem.

3This may not be necessarily the one immediately before change, but could be any
historical problems that have the same workflow.
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composition plans, which can be re-evaluated and bear high potentials to be
used as seeds for the current problem. The reason is obvious as the same
set of plans that have been optimized for a problem is also very likely to be
helpful for another similar problem.

—H-Seed: As in Figure 5a, in this strategy, there is no need for extra
optimization run. Here, suppose there are m historical composition plans
extracted from a historically similar problem, after the re-evaluations, we
perform non-dominated sorting to them under the current problem, and ran-
domly select n non-dominated plans as the seeds (we need n seeds). Note
that it is not uncommon that m > n. If the number of non-dominated plans
is less than n, we then repeat the same process to the next front (i.e., the ones
that being dominated by 1 other plan) till the n seeds have been identified.

—R-Seed: As in Figure 5b, this is similar to H-Seed in the sense that it
relies on historical composition plan without extra optimization run. How-
ever, instead of using non-dominated sorting, we randomly select n historical
composition plans to re-evaluate and use them as seeds for the current prob-
lem.

It is worth noting that, for H-Seed and R-Seed, we do not consider his-
torical problems with different workflow structure, i.e., those with different
abstract services and connectors, because they often have very different prob-
lem nature and offer little help to the current problem. Therefore, given two
composition problems with the same workflow structure, the similarity (or
the degree of differences) between the current and historical problem can be
measured by:

∆ =

n∑
cij ⊕ c′xy
t

(2)

whereby cij and c′xy denote any candidate concrete service from the two prob-
lems, respectively. n is the total number of all possible pair-wise comparison
between concrete service from both problems and t is the total number of
(non-redundant) concrete services for the problems. The operation cij ⊕ c′xy
would return 1, if and only if, cij and c′xy are different; or 0 otherwise. As
mentioned, the differences between two concrete services could be, e.g., they
are fundamentally different services from different providers, or they are the
same service but the provided QoS values have changed from time to time,
all of which can easily occur in real world scenarios. In this way, we obtain
the degree of differences between two composition problems, denoted as ∆.
Clearly, the smaller the ∆, the larger the similarity. Of course, such similarity
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Figure 6: Comparing the four proposed alternative seeding strategies.

may influence the quality of seeds for H-Seed and R-Seed. In the real world
scenarios, it is not difficult to find large amount of data from which some sim-
ilar historical composition problems can be identified; for example, by mining
from the log traces of service-based software systems. In Section 4.5, we con-
duct a set of experiments to investigate whether the composition plans from
a highly similar historical problem is really necessary to take full advantage
of the seeds.

In H-Seed and R-Seed, we presume that the number of available historical
composition plans is at least equal to the number of required seeds, thus the
seeds in the initial population do not need to be copied as they are selected
from the historical composition plans (unless the historical set includes re-
dundant plans). It is important to ensure the historical composition plans
are still valid if the selected concrete service is no longer available. For in-
stance, suppose an abstract service in the historical composition plan selects
a concrete service; but if in the current problem, such a selected concrete
service is no longer available, we then change that selection to a random
one within the new set of candidate concrete services, during the process of
re-evaluations.

A comparison among all the seeding strategies is illustrated in Figure 6.
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3.3.3. MOEA without seeding

We use the following to denote the baseline approach:
—NONE: This is the classic MOEA that runs without seeding, it serves

as a baseline to reason about whether seeding strategies can improve the
overall QoS of the service composition. Since the seeding strategies could
impose different extra execution time, the NONE needs to take into account
the different search budgets (i.e., different overall running time) in order to
create fair comparisons. In particular, we use NONE-ao, NONE-so, NONE-h
and NONE-r to denote the NONE with the corresponding search budget for
AO-Seed, SO-Seed, H-Seed and R-Seed, respectively.

Here, we use the overall running time rather than the number of eval-
uation to express the search budget because: (i) the physical time is more
intuitive and easier to be understood, as the total running time of the seed-
ing and search algorithms can be crucial depending on the domain. (ii) The
pre-optimization in AO-seed and SO-seed is single an optimization problem
(to be solved by single objective algorithms), while the actual optimization
for the current problem is multiple objectives (to be solved by MOEA), and
therefore using the function evaluation as the search budget is unfair as it
would ignore the fact that MOEA often involve much more complex en-
vironmental selection process (e.g., the non-dominated sorting in NSGA-II
and hypervolume calculation in IBEA). In contrast, overall running time can
better reflect the discrepancy on the nature of the two problems and the
algorithms used.

The number of seeds to be placed in the initial population of MOEA is
another factor to investigate [18]. In this work, we have evaluated all the four
seeding strategies under different numbers of required seeds (see Section 4.6).

4. Evaluation

To answer the research questions in Section 2, we conducted a set of
experiments4 based on the real-world dataset WS-DREAM [17]. Such a
dataset contains realistic latency and throughput recorded for 4,500 services,
which can be used as the basic QoS values for the concrete services. To enrich
the conflicts of objectives, we simulate the third objective, namely cost, in

4The source code and experimental results can be accessed at:
https://github.com/taochen/ssase#seeding-seeding-the-search-based-multi-objective-
sas
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such a way that a concrete service with better throughput/latency would
more likely to have higher cost, following a normal distribution5.

4.1. Metrics

To assess the overall QoS of service composition, we apply a variety of
metrics to evaluate the seeding strategies presented in Section 3.3:

• QoS value of each attribute: we report on the mean of the best
individual value of the latency, throughput and cost objective from a
population for a service composition problem over all repeated runs.

• Hypervolume (HV) [25]: We illustrate the HV for the solution set
achieved by each of the considered approaches. HV measures the volume
enclosed by a solution set and a specified reference point and can provide
a combined quality of convergence and diversity. HV is arguably the most
popular metric in multiobjective optimization, thanks to its desirable the-
oretical properties (e.g., strictly compatible with Pareto dominance) and
usability (e.g., no need of a reference set that represents the Pareto opti-
mal front). In addition, HV tends to be more appropriate than the other
metrics when the preferences over different objectives are unclear [26].
Formally, given a solution set S ⊆ Rm and a reference point r ∈ Rm, HV
can be defined as:

HV (S, r) = λ(
⋃
s∈S

{x|s ≺ x ≺ r}) (3)

where m is the number of objectives and r is the reference point, which
is set as the approximate nadir point represented by a vector of the worst
values found for all the objectives; ‘≺’ denotes ‘to Pareto dominate’, and
λ denotes the Lebesgue measure. A high HV value is preferable, reflecting
the set having good comprehensive quality.

• Execution time: we examine the mean execution time incurred by the
seeding strategies for all repeated runs.

5Since the values of latency in the WS-DREAM dataset is similar, when the latency
cannot be distinguished, we use throughput to emulate the cost
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Although HV is generally capable to reveal the overall quality of solution
set [26], when the results are inconsistent, e.g., one has better HV in some
cases but worse in some others, it would be preferable to examine which par-
ticular quality aspect(s) cause such observation. To this end, we additionally
apply the following quality indicators when inconsistent observations have
been made:

• Generational Distance (GD) [14]: We use GD to measure the qual-
ity of convergence for a solution set, the smaller the GD the better the
convergence. GD was originally designed to measure the distance from
the solution set to the Pareto optimal front P , which can be calculated
as follows:

GD(S, P ) =

∑|S|
i=1 di
|S|

(4)

whereby di is the smallest Euclidean distance between the ith point in S
and P . Since the Pareto optimal front is unknown in our problems, we
have used a vector of the best objective value as the reference point in
the Pareto optimal front.

• Spacing [27]: Spacing measure the uniformity, which is one of the two
important properties of diversity, for a solution set. Here, uniformity
represent the extents to which the solutions set exhibit an uniform dis-
tribution, it neither concerns with the closeness to optimality nor the
wideness (i.e., spread) of the solution set. A lower Spacing value means
better uniformity. Spacing can be computed as:

Spacing(S) =

∑|S|
i=1(di − d)2

|S| − 1
(5)

where di is the smallest Euclidean distance between the ith point and
another point in S; d is the mean of di.

• Generalized Spread (GS) [28]: GS is applied to measure the spread,
i.e., the wideness of solutions, in the solution set. The smaller the GS
the better the spread. Note that spread does not concern about the
uniformity, but whether the solutions are distributed as wide as possible
within the solution set. It can be calculated as:

GS(S) =

∑m
k=1 d(ek, S)−

∑|S|
i=1 |di − d|∑m

k=1 d(ek, S) + (|S|)× d
(6)
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Table 1: The Configurations of Workflows

ID #AS max #CS #Parallel Conn. #AS per Parallel Group #Sequential Conn. Search Space

W1 5 88 to 110 1 2 3 1.08 ×1010

W2 5 98 to 119 1 3 2 1.25 ×1010

W3 5 100 to 122 0 0 4 1.73 ×1010

W4 10 87 to 118 3 2 4 1.23 ×1020

W5 10 85 to 122 2 4 3 2.45 ×1020

W6 10 86 to 121 1 8 2 2.23 ×1020

W7 15 87 to 122 1 13 2 2.12 ×1030

W8 15 85 to 122 4 4 or 2 6 3.17 ×1030

W9 15 85 to 122 6 2 or 3 7 2.60 ×1030

W10 100 85 to 122 20 3 59 3.73 ×10202

whereby d(ek, S) is the smallest Euclidean distance between the extreme
point of the kth objective, ek, and a point in S. The other notations are
the same as Spacing. For the extreme points, we used different vectors
that contain the worst possible value for each objective.

To mitigate the impact of scales, before calculating HV, GD, Spacing and
GS, the QoS value of each objective is normalized using v−vmin

vmax−vmin , where v
is the value at the original scale, vmax and vmin are the largest and smallest
value found for the corresponding objectives throughout all the experiment
runs.

4.2. Experiment Setup

As shown in Table 1, we randomly generate 10 different workflows con-
sisting of a diverse mixture of parallel and sequential connectors, each of
which represents different instances of the service composition problem. In
particular, Workflow 1-9 aims to emulate workflow with small to mediums
size, while Workflow 10 is a relatively large workflow, aiming to examine the
effectiveness of seeding under extreme scenarios. Clearly, the size of search
space render the exact optimization unrealistic even for the smallest workflow
with 5 abstract services. For all workflows, each abstract service can select
one from its set of candidate concrete services with different QoS values on
latency, throughput and cost. To enrich the reliability of the experiments,
the concrete services and their QoS values are randomly chosen from the
WS-Dream dataset. The application of both randomly generated workflows
and realistic public dataset of concrete service follows standard approach of
evaluating service-based systems [2][3], this is because in reality, the struc-
ture of service workflow is highly diverse and can exhibit arbitrary number
of possible realizations, however, the fundamental concrete services to be
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Table 2: The objective functions for service composition (an refers to the nth abstract
service; A is the set of abstract services in the workflow; Lan

, Tan
and Can

denote the
corresponding QoS values of the chosen concrete service for an)

QoS Attribute Parallel Sequence

Latency (L) Max Lan
, an ∈ A

∑
an
Lan

, an ∈ A

Throughput (T) Min Tan , an ∈ A Min Tan , an ∈ A

Cost (C)
∑

an
Can , an ∈ A

∑
an
Can , an ∈ A

chosen are often relatively limited. In our work, the considered workflows
contain different structures, number of abstract service, number of concrete
services and the size of search space, covering a wide spectrum of problem
sizes; while they are still derived from realistic QoS values of the concrete
services.

Depending on the connectors, the objective functions that are used to
calculate the overall QoS of the entire workflow are shown in Table 2. Those
functions are widely adopted in the literature [22][23][24][2][3], which have
been serving as standard formulas for calculating the overall QoS of service
composition in the service computing community.

As shown in Table 3, we have used three MOEAs, i.e., NSGA-II [14],
MOEA/D [15] and IBEA [16], as the underlying MOEA for our evaluation,
because they are regarded as the most widely used, but fundamentally dis-
tinct MOEAs in the SBSE community. In our experiments, we set the pa-
rameters of those MOEAs according to the suggestions from the literature,
combined with experimental tailoring, as detailed below:

• Population Size and Number of Evaluations: These settings have
been tailored to all the workflows, and the chosen values tend to be
sufficient to stabilize the search process, i.e., using more population and
generations cannot provide significant improvements on the quality of
the final solution set for the seeded MOEA.

• Mutation Rate: According to prior study [29][3], the tuning of muta-
tion rate is recommended to start from 1/n, where n is the number of
variables. We have also conducted extra trail-and-error by decreasing
and increasing the suggested 1/n mutation rate.

• Crossover Rate: It has been shown that the range for setting crossover
should be within [0.45,0.95] [11][30]. Therefore, we set the crossover
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Table 3: The Setups of MOEAs for All Seeding Stategies

MOEA Pop. Size #Eval. Mutation Rate Crossover Rate Other Parameters
Workflow 1-9

NSGA-II 100 5,000 0.1 0.9 N/A
MOEA/D 100 5,000 0.1 0.9 Tchebycheff; Neighborhood Size=20

IBEA 100 5,000 0.1 0.9 Archieve Size=100; ε-indicator
Workflow 10

NSGA-II 100 30,000 0.02 0.8 N/A
MOEA/D 100 30,000 0.02 0.8 Tchebycheff; Neighborhood Size=20

IBEA 100 30,000 0.02 0.8 Archieve Size=100; ε-indicator

rate and 0.9 (and 0.8) which falls within the range of the recommended
values and has been tailored to meet the search space of the work-
flow. The sensitivity of seeding to crossover operation is investigated
in Section 4.4.

• Other Parameters: For MOEA/D, the Tchebycheff function has
been commonly used as the aggregation function, since it is more ro-
bust to non-convex problem than the simple weighted sum [15] [31]. A
neighboring size of 20 is also the suggested value [15]. For IBEA, the
ε-indicator is the most common indicator when using this MOEA [16];
while the archive size is often set as similar to the population size [2].

For Workflow 1-9, the pre-optimization of AO-Seed and SO-Seed are con-
ducted by single objective GA, with 100 population size and 5000 evaluations.
The mutation and crossover rate are set to 0.1 and 0.9, respectively. This
is the same setup when pre-optimizing latency and throughput for SO-Seed
underWorkflow 10, because we found that having more evaluation would
not change the best objective value. The pre-optimization for AO-Seed and
cost for SO-Seed under Workflow 10 follow the same setup as the actual
multi-objective optimization (e.g., 30,000 evaluations), as in Table 3.

In Section 4.5 and 4.6, we conduct experiments to investigate the similar-
ity of historical problems to the optimization result and the effects of number
of seeds, respectively. However, in all other experiments, we fixed the num-
ber of seeds as 50% of the initial population size, i.e., 50. This is because
as stated in previous SBSE work on seeding for other problems [18], seeding
half of the population tends to be the best practice. Similarly, for H-Seed
and R-Seed in other experiments, the historically similar service composition
problems were emulated by changing 10% of the concrete services of the cur-
rent problem and the number of available historical composition plan is set
to 100, which has been found as a fair amount of difference.
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Figure 7: Examples of the seeds for all seeding strategies under an MOEA and workflow.
(the axes from left to right are cost, latency and inverted throughput)

All historical problems are assumed to have been optimized by NSGA-II6

without seeding, where the setups are the same as Table 3. This is because
it is the worst case where there is no similar problems at all for the historical
problem. Further, majority of the existing applications of MOEAs for service
composition conduct the optimization without seeding, and hence rendering
the seeding strategies as an direct extension to and be compatible with the
existing approaches. However, it is always possible to have the available
historical problems to be optimized with seeds, or by different algorithms
with other setups.

On all metrics, we repeat the experiments for 30 runs and report on the
mean values, unless otherwise stated. The non-parametric Kruskal-Wallis
test has been applied to validate the statistical significance between the com-
parisons under α = 0.05, as the data does not follow normal distribution.
Since the number of subjects under comparisons is more than two, we have
also used Bonferroni correction to correct the α level with respect to the
number of subjects considered. The effect sizes (η2) are also reported and
their meaningfulness are classified following the guidance in [32].

All the seeding strategies are implemented in Java and we have used
JMetal [33] as the underlying MOEA framework. The experiments were run
on a machine with hardware setting of Intel Core i7 dual-core processor with
2.8 GHz each and 4GB DDR3 memory.

4.3. The Performance of Seeding

We firstly assess if any of the seeding strategies can outperform the classic
NSGA-II, MOEA/D and IBEA without seeds under the corresponding search
budget. To this end, as mentioned, we allow the NONE to evolve up to the

6To provide directly comparable results, we use the identical NSGA-II to optimize the
historical problems for all MOEAs studied.
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maximum number of function evaluation plus the extra time taken by a
seeding strategy, denoted as NONE-ao, NONE-so, NONE-h and NONE-r.
The average quality of the final set of composition plans over 30 runs are
reported.

4.3.1. The Comparison of Injected Seeds

Before investigating the effectiveness of seeds, we would like to ensure
that the injected seeds for all the seeding strategies has considerable extents
of differences. As shown in Figure 7, clearly, AO-Seed and SO-Seed are
significantly different from the others, as the seeds are duplicated to fill the
required number of seeds. When comparing H-Seed and R-Seed, we see that
they do contain some overlapping plans, mainly due to the high number of
seeds injected. However, the shape of seeds under H-Seed is closer to the
ideal region (bottom-left corner) than that of the R-Seed, because the non-
dominated solution would always be selected before the others while R-Seed
follows a random selection method.

Table 4: The mean of the best latency (s), throughput (request per second), cost ($) from
the final solution set of the MOEAs for 30 runs (the best is highlighted; L denotes latency,
T denotes throughput and C denotes cost)

NSGA-II

AO-Seed SO-Seed H-Seed R-Seed NONE-ao NONE-so NONE-h NONE-r η2

W
1 −L 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 <.01

+T 0.047 0.047 0.048 0.047 0.047 0.047 0.048 0.047 <.01
+C 7.151 7.151 7.151 7.209 8.837 10.203 12.476 7.151 >.14

W
2 −L 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 <.01

+T 0.109 0.108 0.108 0.108 0.108 0.108 0.109 0.108 ≈.01
+C 7.626 7.487 7.543 7.487 8.930 8.745 13.492 8.108 >.14

W
3 −L 0.087 0.087 0.087 0.087 0.088 0.088 0.087 0.087 <.01

+T 0.052 0.051 0.050 0.051 0.051 0.051 0.050 0.050 ≈.01
+C 8.064 7.999 7.964 7.999 9.082 9.724 7.964 7.964 >.14

W
4 −L 0.113 0.113 0.113 0.113 0.113 0.115 0.113 0.113 <.01

+T 0.048 0.050 0.050 0.048 0.047 0.048 0.048 0.048 >.14
+C 14.988 16.594 16.346 15.832 20.843 20.878 24.832 24.832 >.14

W
5 −L 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 <.01

+T 0.055 0.069 0.071 0.072 0.050 0.051 0.051 0.050 >.14
+C 15.229 16.566 21.662 17.683 21.399 19.361 19.184 18.721 >.14

W
6 −L 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 <.01

+T 0.071 0.087 0.129 0.081 0.051 0.051 0.054 0.050 >.14
+C 14.284 15.136 26.779 22.966 24.929 14.472 117.189 23.586 >.14

W
7 −L 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 <.01

+T 0.068 0.055 0.065 0.057 0.047 0.047 0.048 0.053 >.14
+C 35.873 43.104 43.433 38.301 55.337 49.557 56.330 58.655 >.14

W
8 −L 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 <.01

+T 0.081 0.100 0.080 0.085 0.046 0.047 0.047 0.047 >.14
+C 32.677 37.285 47.465 38.347 46.970 44.839 54.785 62.076 >.14

W
9 −L 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.142 <.01

+T 0.021 0.023 0.024 0.021 0.020 0.020 0.020 0.020 >.14
+C 39.922 43.119 41.578 35.876 42.260 27.627 48.899 61.768 >.14

W
1
0 −L 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 <.01

+T 0.083 0.066 0.098 0.074 0.051 0.049 0.047 0.049 >.14
+C 308.663 310.271 259.126 258.523 288.034 285.431 404.584 416.756 >.14

MOEA/D

AO-Seed SO-Seed H-Seed R-Seed NONE-ao NONE-so NONE-h NONE-r η2
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W
1 +L 0.184 0.189 0.191 0.186 0.118 0.151 0.171 0.184 >.14

+T 0.050 0.050 0.050 0.050 0.048 0.049 0.048 0.050 >.14
−C 7.151 7.151 7.151 7.151 7.151 7.151 7.151 7.151 <.01

W
2 −L 0.023 0.023 0.023 0.023 0.023 0.023 0.023 0.023 <.01

−T 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 <.01
−C 7.487 7.487 7.487 7.487 7.487 7.567 7.487 7.487 ≈.01

W
3 −L 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 <.01

−T 0.051 0.050 0.050 0.050 0.050 0.050 0.050 0.050 <.01
−C 7.999 7.964 7.964 7.964 7.964 7.964 7.964 7.964 <.01

W
4 +L 0.179 0.176 0.176 0.179 0.125 0.129 0.126 0.154 >.14

+T 0.050 0.050 0.050 0.050 0.048 0.048 0.049 0.048 >.14
+C 14.696 14.796 14.915 14.876 14.666 14.638 14.638 14.732 >.14

W
5 −L 0.087 0.087 0.087 0.087 0.087 0.087 0.087 0.087 <.01

+T 0.053 0.051 0.058 0.054 0.050 0.050 0.050 0.050 >.14
+C 14.453 14.323 15.366 15.154 14.189 14.189 14.189 14.838 >.14

W
6 −L 0.045 0.045 0.045 0.045 0.045 0.045 0.045 0.045 <.01

+T 0.053 0.056 0.056 0.059 0.050 0.050 0.050 0.051 >.14
+C 13.397 13.302 13.450 14.005 13.093 13.003 13.257 13.231 >.14

W
7 +L 0.146 0.146 0.148 0.146 0.116 0.117 0.113 0.117 >.14

+T 0.049 0.050 0.051 0.050 0.010 0.048 0.048 0.047 >.14
+C 25.932 27.637 27.877 29.699 23.715 22.603 25.674 26.351 >.14

W
8 −L 0.072 0.072 0.072 0.072 0.072 0.072 0.072 0.072 <.01

+T 0.090 0.096 0.097 0.090 0.048 0.050 0.046 0.048 >.14
+C 23.626 25.643 26.805 29.846 22.182 19.413 22.850 24.634 >.14

W
9 −L 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.142 <.01

+T 0.050 0.048 0.050 0.050 0.026 0.026 0.020 0.022 >.14
+C 26.293 26.527 25.466 24.288 25.039 20.674 25.920 25.988 >.14

W
1
0 +L 0.117 0.114 0.114 0.113 0.113 0.113 0.113 0.113 ≈.06

+T 0.058 0.048 0.052 0.052 0.047 0.047 0.047 0.048 >.14
+C 220.473 224.218 202.547 200.361 230.445 233.043 233.314 255.307 >.14

IBEA

AO-Seed SO-Seed H-Seed R-Seed NONE-ao NONE-so NONE-h NONE-r η2

W
1 +L 0.619 0.113 0.276 0.272 0.114 0.113 0.115 0.202 >.14

+T 0.048 0.048 0.047 0.047 0.047 0.047 0.047 0.048 ≈.06
+C 7.151 7.151 7.151 7.151 7.177 7.151 7.151 7.204 ≈.06

W
2 +L 0.026 0.023 0.026 0.026 0.025 0.026 0.026 0.023 ≈.06

+T 0.108 0.108 0.108 0.109 0.108 0.108 0.108 0.108 ≈.01
+C 7.487 7.487 7.543 7.626 7.487 7.487 7.631 7.487 >.14

W
3 −L 0.642 0.087 0.087 0.087 0.087 0.087 0.087 0.087 ≈.01

+T 0.056 0.225 0.050 0.050 0.050 0.050 0.050 0.051 >.14
+C 8.104 9.011 7.964 7.964 7.964 7.964 7.964 8.034 >.14

W
4 +L 0.319 0.113 0.251 0.275 0.118 0.137 0.132 0.114 >.14

+T 0.106 0.047 0.051 0.050 0.047 0.047 0.047 0.047 >.14
+C 17.969 22.448 16.148 16.867 16.530 17.210 16.088 20.735 >.14

W
5 −L 0.455 0.087 0.087 0.087 0.087 0.087 0.087 0.087 ≈.01

+T 0.072 0.216 0.068 0.092 0.051 0.050 0.051 0.053 >.14
+C 16.093 28.155 18.410 18.041 14.372 14.214 16.639 18.975 >.14

W
6 −L 0.319 0.045 0.045 0.045 0.045 0.045 0.045 0.045 ≈.01

+T 0.064 0.238 0.088 0.103 0.050 0.050 0.050 0.050 >.14
+C 14.388 12.797 20.205 22.717 15.061 13.003 20.625 19.916 >.14

W
7 +L 0.266 0.113 0.170 0.185 0.118 0.118 0.118 0.120 >.14

+T 0.124 0.049 0.065 0.062 0.048 0.047 0.048 0.048 >.14
+C 45.952 58.543 45.304 44.650 38.396 30.767 52.832 54.056 >.14

W
8 −L 0.095 0.072 0.072 0.072 0.072 0.072 0.072 0.072 ≈.01

+T 0.120 0.052 0.097 0.098 0.050 0.052 0.047 0.048 >.14
+C 36.671 43.876 42.645 42.249 35.140 22.668 49.831 52.417 >.14

W
9 −L 0.142 0.142 0.142 0.142 0.142 0.142 0.142 0.142 <.01

+T 0.025 0.026 0.023 0.022 0.021 0.020 0.021 0.020 >.14
+C 43.521 60.988 37.785 34.538 32.542 27.090 45.098 51.732 >.14

W
1
0 +L 0.136 0.128 0.164 0.160 0.113 0.113 0.115 0.120 >.14

+T 0.098 0.105 0.082 0.086 0.051 0.053 0.053 0.049 >.14
+C 350.372 373.478 278.873 274.397 399.557 415.602 447.491 452.831 >.14

Statistically better one between a seeding strategy and its NONE counterpart is highlighted in filled cell. + means
the comparisons on a row is statistically significant (p < 0.00179), or − otherwise. η2 < .01 means trivial effect size;

η2 ∈ [.01, .06) means small effect size; η2 ∈ [.06, .14) means medium effect size; η2 ≥ .14 means large effect size.

4.3.2. The Overall Results

As we can see from Table 4, when comparing the mean value of each
single objective that are statistically significant with non-trivial effect sizes,
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the seeding strategies win 154 comparisons while the NONE counterparts win
78, meaning that the seeding strategies generally achieve better result even
though their NONE counterparts were run under the same search budget.
In particular, for NSGA-II, the seeding strategies secure 66 wins while the
NONE has only 8 wins. For MOEA/D and IBEA, the improvement on the
best single objective values are less obvious, as the win comparisons between
seeding strategies and NONE are 37 versus 37 and 51 versus 33, respectively.
This can be attributed to the fact that the scalar function (in MOEA/D)
and the ε-indicator (in IBEA) tend to obscure the influence brought from
the seeds for the best of each individual quality objective.

We can also see that, for the latency objective, the seeding strategies and
the NONE counterparts perform equally well for most of the cases. We be-
lieve that this is due to the fact that the WS-DREAM dataset contains many
candidate concrete services with similar latency, but quite different through-
put and cost provisions. As a result, the throughput and cost objectives offer
more room for the MOEA to explore, causing the their best values to be dif-
ferent for most of the cases. Since the conflicts between latency/throughput
and cost are strong, an improvement on latency may imply degradation on
cost. However, it is also possible that the latency is good, but improvement
of cost may still be achieved by severely compromising throughput. It is
also worth noting that the best QoS values here are often coming from the
different composition plans.

As for the four proposed seeding strategies, we see that AO-Seed and
SO-Seed often result in a strong bias towards some objectives and it is much
more obvious under large workflow (i.e., Workflow 10 ); while the H-Seed
and R-Seed are relatively more balanced. This is inline with the fact that
AO-Seed and SO-Seed are seeded by seeds that were optimized through sin-
gle/aggregated objective, but H-Seed and R-Seed are based on seeds from
the multi-objective optimization of similar problems.

As shown in Table 5, the improvements achieved by seeding strategies
are more obvious when focusing on the mean HV values, which represent an
overall quality of the convergence and diversity in the final set of composition
plans. We can clearly note that the seeding strategies generally outperform
their corresponding NONE counterparts on the same search budget across
all the MOEAs and workflows, as indicated by the final row of the table.
Specifically, the seeding strategies achieve 105 wins versus 15 wins for the
NONE counterparts. This is especially true for H-Seed and R-Seed as they
outperform NONE-h and NONE-r on all the comparisons. For NSGA-II and
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Table 5: The mean HV of the final solution set for 30 runs. All comparisons are statistically
significant based on Kruskal-Wallis test (p < 0.00179) and with large effect size (η2 > .14).

AO-Seed SO-Seed H-Seed R-Seed NONE-ao NONE-so NONE-h NONE-r
NSGA-II

W1 9.802E-01 9.802E-01 9.803E-01 9.803E-01 9.784E-01 9.795E-01 9.781E-01 9.776E-01

W2 9.644E-01 9.644E-01 9.645E-01 9.645E-01 9.616E-01 9.642E-01 9.621E-01 9.619E-01

W3 9.770E-01 9.771E-01 9.771E-01 9.771E-01 9.746E-01 9.765E-01 9.729E-01 9.729E-01

W4 9.885E-01 9.866E-01 9.871E-01 9.874E-01 9.786E-01 9.836E-01 9.705E-01 9.705E-01

W5 9.849E-01 9.835E-01 9.770E-01 9.822E-01 9.737E-01 9.807E-01 9.658E-01 9.662E-01

W6 9.925E-01 9.916E-01 9.800E-01 9.833E-01 9.809E-01 9.864E-01 9.722E-01 9.706E-01

W7 9.812E-01 9.735E-01 9.749E-01 9.786E-01 9.581E-01 9.654E-01 9.460E-01 9.438E-01

W8 9.790E-01 9.759E-01 9.673E-01 9.751E-01 9.438E-01 9.661E-01 9.455E-01 9.372E-01

W9 9.647E-01 9.594E-01 9.620E-01 9.660E-01 9.499E-01 9.530E-01 9.367E-01 9.341E-01
W10 9.785E-01 9.779E-01 9.860E-01 9.860E-01 9.735E-01 9.768E-01 9.521E-01 9.531E-01

MOEA/D
W1 9.418E-01 9.412E-01 9.416E-01 9.415E-01 9.408E-01 9.405E-01 9.408E-01 9.413E-01

W2 9.573E-01 9.571E-01 9.572E-01 9.572E-01 9.569E-01 9.569E-01 9.569E-01 9.553E-01

W3 9.671E-01 9.670E-01 9.669E-01 9.667E-01 9.663E-01 9.665E-01 9.664E-01 9.663E-01

W4 9.534E-01 9.532E-01 9.531E-01 9.534E-01 9.523E-01 9.535E-01 9.527E-01 9.531E-01

W5 9.771E-01 9.772E-01 9.777E-01 9.765E-01 9.769E-01 9.765E-01 9.763E-01 9.758E-01

W6 9.886E-01 9.889E-01 9.889E-01 9.888E-01 9.880E-01 9.883E-01 9.874E-01 9.869E-01

W7 9.613E-01 9.577E-01 9.611E-01 9.608E-01 9.574E-01 9.622E-01 9.585E-01 9.586E-01

W8 9.866E-01 9.863E-01 9.842E-01 9.831E-01 9.809E-01 9.862E-01 9.815E-01 9.769E-01

W9 9.649E-01 9.644E-01 9.657E-01 9.666E-01 9.618E-01 9.670E-01 9.609E-01 9.606E-01
W10 9.853E-01 9.838E-01 9.897E-01 9.893E-01 9.820E-01 9.787E-01 9.729E-01 9.725E-01

IBEA
W1 9.093E-01 9.703E-01 9.572E-01 9.573E-01 9.512E-01 9.495E-01 9.443E-01 9.508E-01

W2 9.619E-01 9.621E-01 9.622E-01 9.623E-01 9.602E-01 9.622E-01 9.599E-01 9.611E-01

W3 9.423E-01 9.757E-01 9.764E-01 9.764E-01 9.761E-01 9.764E-01 9.720E-01 9.744E-01

W4 9.589E-01 9.768E-01 9.669E-01 9.635E-01 9.617E-01 9.648E-01 9.541E-01 9.526E-01

W5 9.597E-01 9.717E-01 9.810E-01 9.820E-01 9.762E-01 9.835E-01 9.717E-01 9.737E-01

W6 9.711E-01 9.894E-01 9.834E-01 9.839E-01 9.838E-01 9.911E-01 9.779E-01 9.813E-01

W7 9.528E-01 9.545E-01 9.656E-01 9.634E-01 9.496E-01 9.641E-01 9.351E-01 9.358E-01

W8 9.732E-01 9.688E-01 9.720E-01 9.723E-01 9.618E-01 9.829E-01 9.489E-01 9.481E-01

W9 9.590E-01 9.510E-01 9.628E-01 9.655E-01 9.554E-01 9.660E-01 9.462E-01 9.445E-01
W10 9.688E-01 9.667E-01 9.755E-01 9.768E-01 9.522E-01 9.516E-01 9.435E-01 9.427E-01

Mean of All MOEAs and Workflows
All 9.677E-01 9.711E-01 9.715E-01 9.722E-01 9.655E-01 9.695E-01 9.603E-01 9.600E-01

Statistically better one between a seeding strategy and its NONE counterpart is highlighted in filled cell. The one with
the statistically significant best results on all approaches is shown in bold border.

MOEA/D, the improvements of seeding are obvious, but for the AO-Seed and
SO-Seed under IBEA, the NONE counterparts are very competitive and the
SO-Seed even tend to worsen the HV value. This is because in those cases,
the seeds have compromised convergence and spread for better uniformity
under IBEA (as we will discuss later).

We can also see that AO-Seed tends to have the best HV for most of
the cases (except for IBEA). Such observations imply that the possible true
Pareto front for most of the problems are likely to be convex, and therefore
when seeding the MOEA with equal weight (as in AO-Seed), the seeds can
better steer the search into regions close to such convex surface under certain
algorithms, e.g., NSGA-II and MOEA/D.

Despite that the seeding strategies outperform the NONE counterparts
on HV in general, they can indeed lead to worse HV values under some
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cases. To understand what causes those inconsistent observations, we use
GD, Spacing and GS to independently measure the convergence, uniformity
and spread of the final set of composition plans. Table 6 shows the mean
GD, Spacing and GS values for cases where seeding strategies have better (or
worse) HV than the NONE. Generally, for all MOEAs and workflows, the
seeding strategies tend to degrade the spread, except for AO-Seed and H-
Seed, while improving the convergence (except for SO-Seed) and uniformity.
This results, in combination, would lead to the overall better HV value shown
in Table 5.

In particular, H-Seed and R-Seed promote better GD, and thus better
convergence on all MOEAs. In contrast, the GD of AO-Seed may be worse
than the NONE-ao under IBEA, which is one of reasons that obscures the
effectiveness of seeding. For SO-Seed, we see that it has worse convergence
than NONE-so on all cases, even when the overall HV value is better. We
believe the reason could be due to the fact that IBEA is sensitive to the
redundant plans of the initial population in AO-Seed and SO-Seed, which
has eventually prevented it to explore better ones.

For Spacing, we see that the seeding strategies generally have better val-
ues, and hence better uniformity, than the NONE counterparts. The only
exception is under MOEA/D, where it is possible for the SO-Seed to result
in worse uniformity than NONE-so. We did not see consistent results on GS,
in fact, the NONE counterparts tend to have generally competitive spread
according to the GS values, especially for SO-Seed. The reason can be due
to the seeds all contain certain information to constraint the search, which
can limit the exploration of widely spread composition plans.

Overall, following the detailed analysis of GD, Spacing and GS, the con-
sistently better HV value achieved by H-Seed and R-Seed are due to the
improvement on convergence, uniformity and spread of the final set of com-
position plans; for R-Seed under NSGA-II and H-Seed under MOEA/D, this
is the results of significantly better convergence and uniformity of the solu-
tions set, while compromising the quality of spread. This is the same for
AO-Seed under NSGA-II. For other cases of AO-Seed, it may achieve better
HV value with better results on all three quality aspects under MOEA/D
and IBEA, in the meantime, it may also lead to worse HV value under IBEA
due to significantly degraded convergence. SO-Seed exhibits some interest-
ing results: in contrast to its NONE counterpart, it tends to improve the
uniformity, but compromise the convergence and spread. Specifically, when
SO-Seed achieves better HV than NONE-so, the reasons can be due to sig-
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Table 6: The mean GD, SP (Spacing) and GS of the final solution set for the workflows
and 30 runs. All comparisons are statistically significant based on Kruskal-Wallis test
(p < 0.00179) and with medium to large effect size (η2 ≥ .06.)

GD AO-Seed SO-Seed H-Seed R-Seed NONE-ao NONE-so NONE-h NONE-r
NSGA-II

↑HV 4.003E-02 4.248E-02 3.506E-02 3.877E-02 4.407E-02 3.761E-02 4.969E-02 4.746E-02
MOEA/D

↑HV 8.922E-02 9.368E-02 8.934E-02 9.053E-02 1.018E-01 9.218E-02 1.037E-01 1.043E-01
↓HV - 1.181E-01 - - - 1.035E-01 - -

IBEA
↑HV 3.538E-02 7.024E-02 4.862E-02 4.700E-02 6.144E-02 6.289E-02 5.758E-02 5.982E-02
↓HV 4.701E-02 6.045E-02 - - 4.505E-02 4.069E-02 - -

Mean of All MOEAs and Workflows
All 5.681E-02 6.896E-02 5.767E-02 5.876E-02 6.637E-02 6.018E-02 7.031E-02 7.053E-02

SP AO-Seed SO-Seed H-Seed R-Seed NONE-ao NONE-so NONE-h NONE-r
NSGA-II

↑HV 3.106E-02 3.333E-02 2.518E-02 3.830E-02 5.467E-02 4.730E-02 5.596E-02 6.281E-02
MOEA/D

↑HV 6.507E-02 6.634E-02 5.785E-02 4.480E-02 8.677E-02 7.956E-02 1.041E-01 1.131E-01
↓HV - 1.251E-01 - - - 7.395E-02 - -

IBEA
↑HV 4.933E-02 6.717E-02 5.584E-02 5.194E-02 9.610E-02 8.993E-02 8.126E-02 7.877E-02
↓HV 2.177E-02 3.630E-02 - - 4.000E-02 3.788E-02 - -

Mean of All MOEAs and Workflows
All 4.389E-02 5.433E-02 4.629E-02 4.501E-02 6.983E-02 5.956E-02 8.043E-02 8.489E-02

GS AO-Seed SO-Seed H-Seed R-Seed NONE-ao NONE-so NONE-h NONE-r
NSGA-II

↑HV 6.041E-01 6.326E-01 5.799E-01 6.148E-01 5.872E-01 5.792E-01 5.806E-01 5.760E-01
MOEA/D

↑HV 7.076E-01 7.344E-01 7.069E-01 6.879E-01 7.106E-01 7.282E-01 7.068E-01 6.894E-01
↓HV - 6.384E-01 - - - 5.834E-01 - -

IBEA
↑HV 5.498E-01 8.038E-01 6.656E-01 6.574E-01 6.940E-01 7.200E-01 6.725E-01 6.652E-01
↓HV 5.876E-01 6.305E-01 - - 6.417E-01 6.140E-01 - -

Mean of All MOEAs and Workflows
All 6.268E-01 6.736E-01 6.508E-01 6.534E-01 6.552E-01 6.366E-01 6.533E-01 6.436E-01

Statistically better one between a seeding strategy and its NONE counterpart is highlighted in filled cell. ↑HV denotes
the mean for the cases where a seeding strategy has better HV value than its NONE counterpart; ↓HV means the opposite.

nificantly improved uniformity with compromised convergence and spread.
When SO-Seed has worse HV, the cause can be attributed to the degrada-
tion on all three quality aspects (under MOEA/D), or the improvement on
uniformity cannot cover the compromise on convergence and spread (under
IBEA).

To ensure that the results obtained above are the interplay between seeds
and evolution, in Figure 8, we plot the initially seeded population and the
finally evolved solutions set of an example run. For AO-Seed and SO-Seed,
as expected, we see that the final populations are significantly different from
the initial ones. For H-Seed and SO-Seed, we can also observe that the
evolution done by MOEA can further push the set of composition plans closer
to the ideal region, even though some seeds in the initial population tends
to be quite good already. This implies that the MOEA is able to exploit
the benefits introduced by the seeds and, in conjunction with the random
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Figure 8: Example comparisons between the initially seeded population and the finally
evolved population on an MOEA and workflow. (the axes from left to right are cost,
latency and inverted throughput)
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Figure 9: Example comparisons of the finally evolved population between seeding strate-
gies and their NONE counterparts on an MOEA and workflow. (the axes from left to right
are cost, latency and inverted throughput)

composition plans, to create more pressure to push the search towards the
ideal region

In Figure 9, we also show example of the populations between all seed-
ing strategies and their NONE counterparts. It is clear that the sets of
composition plans exhibit similar results to the above comparison on quality
indicators: all seeding strategies tend to have better set of composition plans,
but the improvement on SO-Seed one tends to be less obvious.

4.3.3. Changes During Evolution

Next, we take a closer look on how the mean HV values change with
respect to the number of function evaluation as the search evolves. To this
end, we report on the mean HV of the populations for each 500 function
evaluation over 30 runs for all the workflows. Due to space constraints, we
show only example workflow for all the MOEAs.

As we can see from Figures 10, 11, 12 and 13, all the seeding strate-
gies have reached better HV values than that of their corresponding NONE
throughout the evolution. In particular, SO-Seed and AO-Seed required
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(b) MOEA/D on Workflow 1
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Figure 10: The changes of mean HV on 30 runs (y-axis) with respect to the number of
evaluations (x-axis) on workflows with 5 abstract services.

larger search budget than the other two, and the SO-Seed exhibits the largest
budget which allows the NONE to run for nearly 100% more function eval-
uations. However, the HV of the final population produced by the seeding
strategies can still outperform their NONE counterparts with statistical sig-
nificance. When comparing the differences between seeding strategies and the
corresponding NONE, we noticed that generally, their improvements tend to
amplify as the complexity of problem increases, i.e., from 5 (Workflow 1-
3 ) to 15 (Workflow 7-9 ) abstract services, and being the most obvious on
Workflow 10 with 100 abstract services. This is as expected, because the
larger the search space is, the more benefits can be provided by the seeds
through steering the search to focus on regions that are more likely to contain
ideal composition plans. Further, it is clear that for all the cases, the seed-
ing strategies tends to reach higher HV value much earlier than the NONE
counterparts, which implies that when the search budget is limited (e.g., one
can only accept the time used for 1,000 function evaluation), the benefits
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(b) MOEAD/D on Workflow 4
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Figure 11: The changes of mean HV on 30 runs (y-axis) with respect to the number of
evaluations (x-axis) on workflows with 10 abstract services.

brought by the seeding strategies would become much more important.
Generally, when comparing the four proposed seeding strategies, the HV

of the initial population on H-Seed and R-Seed have been significantly better
than the others for all cases. This is because the AO-Seed and SO-Seed have
limited diversity due to the fact that the same seed(s) are copied, which has
caused them to have even lower HV value than their NONE counterparts.
However, the AO-Seed and SO-Seed are able to improve their mean HV
values very quickly once the diversity has been improved, and thereby all
the seeding strategies have obtained similar HV after the initial generations,
e.g., after 1,000 evaluations. Relatively to H-Seed and R-Seed, AO-Seed
and SO-Seed tend to be closer their NONE counterparts. This is because
the extra overhead caused by the extra pre-optimization could hinder the
benefit of seeding, implying that the trade-off between the time spent on
pre-optimization and the benefit gains is crucial.
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Figure 12: The changes of mean HV on 30 runs (y-axis) with respect to the number of
evaluations (x-axis) on workflows with 15 abstract services.

However, we observe some interesting results: there are cases for H-Seed
and R-Seed where the initially seeded HV values are actually better than that
of the finally evolved one, mainly under MOEA/D and IBEA on the smaller
workflows with 5 to 10 abstract services. To investigate what cause such an
observation, in Figure 14, we further plot the changes of GD, Spacing and GS
of those cases throughout the entire evolution. As we can see, for MOEA/D
under those cases, the Spacing and GS tends to improve with the evolution,
but the GD tends to degrade, implying that the H-Seed and R-Seed tends
to force the MOEA/D to compromise convergence for better diversity. The
degradation on convergence tends to be severer than the benefits gain from
the diversity, which eventually lead to worse HV value. Under IBEA, we see
that both convergence and spread are compromised for better uniformity,
which clearly lead to overall degradation on the HV. This is due to the fact
that MOEA/D, and especially IBEA, treat diversity (mainly uniformity)
more important than NSGA-II, and thus in certain cases, they may basis
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(b) MOEA/D on Workflow 10

0 1.5 3.7

·104

0.4

0.6

0.8

1

2 2.5 3 3.5

·104

0.92

0.94

0.96

AO-Seed NONE-ao

0 1.5 3.5

·104

0.4

0.6

0.8

1

2 2.5 3 3.5

·104

0.92

0.94

0.96

SO-Seed NONE-so

0 1.5 3

·104

0.4

0.6

0.8

1

2 2.2 2.4 2.6 2.8 3

·104

0.92

0.94

0.96

0.98

H-Seed NONE-h

0 1.5 3

·104

0.4

0.6

0.8

1

2 2.2 2.4 2.6 2.8 3

·104

0.92

0.94

0.96

0.98

R-Seed NONE-r

(c) IBEA on Workflow 10

Figure 13: The changes of mean HV on 30 runs (y-axis) with respect to the number of
evaluations (x-axis) on workflows with 100 abstract services.

too much towards uniformity which compromise the overall HV value. This
complies with the observations in the evolutionary computation community
such that those algorithms, in fact most MOEAs, cannot guarantee that their
population never deteriorates with respect to Pareto dominance (due to, e.g.,
the archiving process) [34][35], and thus may end up with a significantly worse
HV value.

Overall, the answer to RQ1 can be: in contrast to the NONE counter-
parts under the same search budget, all seeding strategies help to improve
the overall QoS of service composition, not only for individual objective
value, but also for the overall HV of the final set of composition plans in
general. They also help to create steady and better improvement along

31



H-Seed R-Seed

0 3,000

0.05

0.1

GD
Workflow 1

0 3,000
0

0.1

0.2

Spacing
Workflow 1

0 3,000

0.35

0.4

0.45

0.5

GS

Workflow 1

0 3,000

0.05

0.1

0.15

GD
Workflow 4

0 3,000
0

0.05

0.1

0.15
Spacing

Workflow 4

0 3,000

0.4

0.6

0.8

GS
Workflow 4

(a) MOEA/D

0 3,000

0.04

0.05

GD
Workflow 1

0 3,000
0

0.1

0.2

Spacing

Workflow 1

0 3,000
0.4

0.5

0.6

0.7

GS
Workflow 1

0 3,000

0.03

0.04

0.05

GD
Workflow 4

0 3,000

0.05

0.1

0.15

Spacing
Workflow 4

0 3,000

0.65

0.7

GS
Workflow 4

(b) IBEA

Figure 14: The changes of mean GD, Spacing and GS for H-Seed and R-Seed (y-axis) with
respect to the number of evaluations (x-axis) on workflow 1 and 4 over 30 runs.

the evolution process and it has been confirmed that the benefits are due
to the interplay between the seeds and the evolution of MOEA. However,
the improvement on overall HV does not necessarily means a consistent
improvement over convergence, uniformity and spread; it may involve rel-
atively smaller compromise on one or two of the above quality aspects,
especially for the AO-Seed and SO-Seed under MOEA/D and IBEA. H-
Seed and R-Seed could also amplify the issue of evolution deterioration
in MOEA.

4.4. The Impact of the Crossover Operator

To investigate RQ2 , we run all the seeding strategies and their NONE
counterparts with different crossover rates (still on the same search budgets).
In particular, for Workflow 1-9, we examined the crossover rate7 of 0, 0.3,
0.6 and 0.9; for for Workflow 10, the crossover rate is set as 0,0.2,0.5 and
0.8. The resulting mean HV values (over all workflows and 30 repeated run)
of the final set of composition plans were reported.

From Figure 15, we observe rather consistent results: it is clearly that
different crossover rates can indeed affect the behaviors of seeded MOEAs for
service composition problem, with statistically significance and non-trivial

7A crossover rate of 0 means eliminating crossover operation.
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Figure 15: The changes of mean HV with respect to the crossover rate for all workflows
and 30 runs. All comparisons are statistically significant based on Kruskal-Wallis test
(p < 0.0083) and with non-trivial effect size (η2 ≥ .01). For the crossover rate, Zero=0;
Small=0.3 (or 0.2); Medium=0.6 (or 0.5); Large=0.9 (or 0.8).
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Figure 16: Example comparisons of the solution sets by using different crossover rate
on an MOEA and workflow. (the axes from left to right are cost, latency and inverted
throughput)

effect sizes. Contradictory to the conclusion in prior work [20], with the
examined crossover rates, the HV value tends to improve when the crossover
rate increases, meaning that completely eliminating or having less crossover
is considered harmful for multi-objective optimization of service composition.
However, in contrast to the NONE counterparts, it is clear that the seeding
strategies are much less affected by the crossover rates on all workflows and
the MOEAs, as evident by the much smaller reductions on the HV values.
This is because, although the low frequency of crossover operation means
some good genes of parental composition plans cannot be recombined, the
seeds, which are considered to be high quality in certain aspect, can still
play crucial roles in the evolution. In contrast, their NONE counterparts rely
significantly on the crossover to produce good recombined genes of randomly-
generated initial composition plans; therefore lower crossover implies that it
is more difficult to create high quality composition plans.

In Figure 16, we plot the raw QoS values of all composition plans for all
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Figure 17: The mean HV of the initial seeds from historical problems with diverse degree
of differences ∆.

seeding strategies in an example run. As we can see that, indeed, higher
crossover rates tend to have more diverse composition plans, and they are
also closer to the bottom-left of the cube, which is the ideal region.

In conclusion, the answer for RQ2 is: yes, the crossover operation and its
rate are important to the seeded multi-objective service composition op-
timization. In particular, eliminating or having less crossover is harmful.
However, in contrast to the NONE counterparts, the seeding strategies
are much less sensitive to the rate (and presence) of crossover operation.

4.5. The Sensitivity to Historical Composition Problems

Unlike AO-Seed and SO-Seed, the benefit of light search budget on H-
Seed and R-Seed rely primarily on the historical composition problems and
the resulted historical composition plan. As a result, it is essential to evaluate
the sensitivity of H-Seed and R-Seed to the differences between current and
historical composition problems. To this end, we randomly varied the current
problem to emulate historical ones in such a way that the degree of differences
∆ (as explained in Section 3.3) between current and historical composition
problem ranges from 10% to 90%, and then investigated the changes on mean
HV values of the final set of composition plans for both H-Seed and R-Seed
over all workflows and 30 repeated run.
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Figure 18: The changes of mean HV with respect to the difference to historical problem for
H-Seed and R-Seed over all workflows and 30 runs. All comparisons are not statistically
significant based on Kruskal-Wallis test (p ≥ 0.005) and with trivial effect size (η2 < .01).

Figure 17 illustrates the mean HV of the initial seeds selected from histor-
ical problems with varying degree of differences for both H-Seed and R-Seed.
As expected, in general, the quality of seeds descents as the differences grow
larger, reaching the worst with the largest difference at 90%. Surprisingly,
we can also observe some exceptions, for example, in workflow 5, 6 and 8, the
quality of seeds for the case of 10% to 70% differences exhibit clear non-linear
change, which implies that the problem with the smallest difference may not
the one that produces the best set of seeds. One explanation for this is that
the seeding individuals from historical problems may not be the best plans
yet, e.g., they may get trapped into local optima. Therefore, using them as
seeds to guide the search for very similar problems may not help very much in
finding the global optimal plans. Another possible explanation could be that
the change on the degree of difference could vary the complexity of the prob-
lem at diverse levels. That is to say, a historical problem with 10% difference
may be more difficult to solve than another with 30% difference, which in
turn, causing the candidate seeds to be selected for the 30% difference case
to be much better than that of the 10% difference.

Next, when the selected seeds were used in the actual evolutionary op-
timization, as shown in Figure 18, we obtain rather consistent results: the
mean HV value changes generally consistent with the HV fluctuation of the
initial seeds in Figure 17 and the 90% case usually lead to the worst re-
sults, the differences are not statistically significant and with trivial effect
size though. Further, it is clear that the results of seeding are still greatly
better HV values than their NONE counterparts even with up to 90% differ-
ence of the problem settings. In Figure 19, we plot the raw QoS value of all
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Figure 19: Example comparisons of the solution sets for H-Seed and R-Seed when using
different ∆ of historical problems on an MOEA and workflow. (the axes from left to right
are cost, latency and inverted throughput)

composition plans for both H-Seed and R-Seed in an example run. We can
clearly see that for both seeding strategies, the sets of compositions plan with
different ∆ do not differ much, which is comply with the results indicated by
the HV values.

Those observations suggest an important conclusion: for H-Seed and R-
Seed, the seeds do not have to be coming from the most similar historical
composition problem to achieve the best HV value. However, the seeds from
largely different historical problems (e.g., 90% differences) should usually be
avoided, unless they are the only available seeds.

Overall, the answer for RQ3 is: no, for both the H-Seed and R-Seed, the
seeds do not have to come from the most similar historical composition
problem to achieve the best HV value. This is because various degree of
differences may result in different levels of complexity for the historical
composition problem, and thus affecting the quality of seeds and their
benefits during evolution. However, it is recommended that the seeds
from largely different historical problems (e.g., 90% differences) should
usually be avoided, unless they are the only available seeds. Further, the
results of seeding are still generally better than their NONE counterparts
even with up to 90% difference of the problem settings.

4.6. The Impact of the Number of Seeds

In this section, we analyze how the number of seeds can impact the overall
QoS of service composition optimization. To this end, we run the seeding
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Figure 20: The changes of mean HV, GD, Spacing and GS with respect to the percentage
of seeds for all workflows and 30 runs. η2 < .01 means trivial effect size; η2 ∈ [.01, .06)
means small effect size; η2 ∈ [.06, .14) means medium effect size; η2 ≥ .14 means large
effect size. After the Bonferroni correction, p < .005 indicates statistical significance.

strategies using different number of seeds, i.e., 10%, 30%, 50%, 70% and 90%
of the initial population (100 composition plans) are seeds, each of which were
run 30 times; the average quality of the final sets of composition plans on all
workflwos and runs are assessed.
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As we can see from Figure 20, surprisingly, we did not observe significant
implications of the number of seeds to the HV of the final set of composi-
tion plans for different workflows for most of the cases. This has also been
confirmed by the fact that the Kruskal-Wallis test has failed (p ≥ 0.005 after
Bonferroni correction) with trivial effect sizes when comparing the HV using
different number of seeds. The only exceptions are AO-Seed and SO-Seed
under IBEA, where the mean HV degrades as the number of seeds increase,
with statistical significance and large effect sizes.

To understand the reasons behind the inconsistent observation on HV,
we have also examined the results on GD, Spacing and GS. From Figure 20,
we see that, for most of the cases, the value changes are not statistically
significant with different number of seeds. The exceptions are the uniformity
(Spacing) of SO-Seed and the spread (GS) of AO-Seed under NSGA-II, which
have statistically significant difference with small effect sizes. However, the
changes are not large enough to cause their HV to differ significantly. Another
interesting result is for AO-Seed and SO-Seed under IBEA when comparing
Spacing and GS, in which the spread becomes better while the uniformity
degrades simultaneously with more seeds. The differences are statistically
significant with large effect size. Such a largely compromised uniformity is
the key reason behind the degradation of the overall HV values under IBEA.

To further investigate the reason behind the above observations, we ex-
amined how many composition plans that were evolved from seeds8 in the
final set of composition plans when changing the number of seeds. For all the
workflows, Figure 21 shows the maximum number of evaluations required in
order to evolve a population which contains only the composition plans that
are descendants of the seeds. We can clearly see that all seeding strategies
for Workflow 1-9, with number of seeds from 10 to 90, have eliminated all
other randomly initialized composition plans in the population within less
than 1,200 evaluations for NSGA-II and IBEA; and within the total 5,000
evaluations for MOEA/D. Similar observation can be made for for Workflow
10, where it requires up to 25,000 evaluation for the population to elimi-
nate all other randomly initialized composition plans. In other words, all
the composition plans in the final solution set are evolved from the seeds.
This finding explains (i) why the implication of the number of seeds has
been insignificant for most of the cases: because following the natural evolu-

8A plan is said to be evolved from seeds if at least one of its ancestors is a seed.
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(f) IBEA, Workflow 10

Figure 21: The maximum number of function evaluations (on all workflows and 30 runs)
for the population contains only the composition plans that are descendants of the seeds.

tion and environmental selection in MOEAs, it does not matter how many
seeds were put into the initial population, as the seeds and their descendants
would survive during the evolution and dominate the entire population any-
way. Therefore, in general, the resulted composition plans would not promote
significant changes of the population with different numbers of seeds as the
seeds (and their descendants) exhibit similar characteristics. (ii) The degra-
dation of HV with different numbers of seeds under IBEA is mainly due to
the largely similar characteristics of seeds (and their descendants) in AO-
Seed and SO-Seed, which were copied from same seeds, may prevent the HV
based environmental selection in IBEA to improve uniformity, causing it to
degrade with more seeds.

In summary, the answer to RQ4 is: no, we did not observe significant
implication of the number of seeds to the optimization quality in general,
except for AO-Seed and SO-Seed under IBEA. The result is due to the
fact that the seeds can effectively steer the evolutionary search, causing
the final solution set contains only the composition plans that are evolved
from those seeds. However, this observation cannot rule out the role of
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Figure 22: The mean and deviation of the execution time of seeding (30 runs) with respect
to function evaluation and the number of historical composition plans for all workflows.

non-seeded individuals (i.e., randomly initialized composition plans), as
they may help to produce promising offspring in conjunction with the
seeds in the crossover operation. For AO-Seed and SO-Seed under IBEA,
the less seeds the better, as they tend to negatively affect the uniformity
of the search results, which eventually degrade the HV value.

4.7. Seeding Overhead

The seeding strategies could impose extra running time overhead due
to the prerequisite optimization process and the selection of the historical
composition plans. In particular, the overhead of AO-Seed and SO-Seed9 is
sensitive to the number of function evaluation in the pre-optimization while
that of H-Seed and R-Seed can be influenced by the number of historical
composition plans.

Figure 22 shows the extra running time overhead of seeding with respect
to function evaluation and the number of historical composition plans for
all workflows. As we can see, SO-Seed has bigger overhead than AO-Seed
because the former needs to run optimization for each of the objectives indi-
vidually; while the latter aggregates all objectives to optimize in one run. For
H-Seed, the extra overhead increases exponentially as the number of histori-
cal composition plans increase. In contrast, the overhead of R-Seed remains

9We assume that each single objective optimization takes the same execution time.
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unaffected. This is because the non-dominated sorting in H-Seed needs to
rank all the historical composition plans while R-Seed only rely on random
selection. However, it is clear that the extra overhead caused by the seeding
strategies is less than a few seconds with up to 30,000 function evaluations
and 3,000 historical composition plans. As such, the overhead is negligible
considering the large search space of the service composition problems. Fur-
ther, as we have shown, for most of the studied composition problems, the
seeding strategies only require 5,000 function evaluation and 100 historical
composition plans to significantly improve the overall QoS of service compo-
sition than the case of no seeds. However, we found that for AO-Seed and
SO-Seed, larger number of evaluations may not lead to significantly improved
results while generating extra overhead, which could hinder the benefits form
the seeds.

Overall, to answer RQ5 , the running overhead imposed by the seeding
strategies are negligible, especially considering the search space of the
service composition problems.

5. Threats to Validity

Construct threads can be introduced by the stochastic nature of MOEA,
which may create bias to the metrics used. To mitigate such bias, we have
repeated the optimization run for each workflow 30 times. Statistical signifi-
cant test and effect sizes are also used to further validate the meaningfulness
of the results.

Internal threats may arise from the settings used in MOEA. In this work,
as mention in Section 4.2, the parameters are set as either commonly used
values, following the guidance from the literature and carefully tailored such
that it produces good trade-off between the quality of optimization and the
overhead.

External threats are linked to the selected benchmark setup, the exper-
imental data and the MOEAs studied. In the experiments, we have relied
on the real-world WS-DREAM dataset, based on which we extracted data
to form 10 distinct workflows. Although three different MOEAs have been
studied, the fact that only three quality objectives are considered may lead
to this threat. However, exploring the effectiveness of seeding, as well as that
of the MOEAs, under high dimensional objectives space (i.e., more than 3
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objectives) is a challenging research question itself [36], which we would plan
to investigate as part of the future work.

6. Related Work

The service composition problem has been traditionally rendered as single-
objective optimization where only one QoS attribute is considered or multiple
QoS attributes are aggregated together.

Among the exact single-objective optimization approaches, linear pro-
gramming algorithm and its variants are the most widely studied one on the
service composition problem [22][23][24]. Those approaches were designed to
find single optimal composition plan for problems with small number of can-
didate concrete services. However, they suffer two major limitations: (i) they
are not scalable and can incur high computational overhead when the search
space becomes large, which is common for modem service systems. (ii) They
rely on aggregation of objectives which cannot properly reveal the trade-off
of the problems and it is often difficult to correctly weight the aggregation. In
contrast, Canfora et al. [10] apply single-objective genetic algorithm to solve
the problem. Such approach is capable to find optimal (or near-optimal) so-
lution for problem with large search space. However, it solves the scalability
issue but remain affected by the unwise aggregation of objectives.

More recently, service composition has been rendered and addressed as
a multi-objective optimization problem, which often have multiple conflict-
ing QoS attributes. Existing efforts have been focusing on designing and
extending MOEAs or other meta-heuristic algorithms to search composition
plans in particular regions of the objective space or of specific distribution.
For example, Wada et al. [3] have proposed two variants of the NSGA-II by
extending its environmental selection phase: one for searching composition
plans that are uniformly distributed and another for finding those that are
close to a set of given QoS requirements. Yin et al. [30] have also used an
extended multi-objective version of the Particle Swarm Optimization (PSO)
to find diverse composition plans.

Another direction of efforts is about scaling the number of objectives,
i.e., optimizing service composition with more than three QoS attributes.
Trummer et al. [4] investigate the ability of PSO on optimizing service com-
position with 5 conflicting QoS attributes. Similarly, Yu et al. [11] extend
NSGA-II, namely F-MGOP, to handle 4 QoS attributes. Those approaches
have been specifically tailored to handle a high number of objectives. Ramı́rez
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et al. [2] have compared 7 MOEAs for optimizing up to 9 QoS attributes.
Their study reveals that most of the algorithms have little sensitivity to the
problem structure, i.e., the workflow.

Seeding strategies for SBSE problems was initially applied for Software
Testing [7] and Software Product Line [5] domain. However, those approaches
have heavily relied on the nature of the problem and thus cannot be compared
with ours directly in the context of service composition. For example, in
search-based software testing [7], one of the seeding strategies is to seed
existing constant values of the code into the newly generated test cases.

Overall, existing work on service composition has focused on the algo-
rithm level and has not considered seeding, a perhaps obvious but surpris-
ingly ignored way to improve service composition optimization when using
MOEAs. This paper is the first to propose, investigate and discuss about
the effectiveness of different seeding strategies for the problem of service
composition. Although we have used NSGA-II, MOEA/D and IBEA in the
experiments, those seeding strategies are independent to the specific MOEA,
as they are designed for generically improving the quality of the initial pop-
ulation.

7. Conclusion

Service composition would continuous to be an important and challenging
problems due to the large variety of available candidate services. This paper
is the first to investigate the effects of four proposed seeding strategies, which
provide knowledge of the problem to consolidate the MOEA for optimizing
software service composition. A wide range of experimental results confirm
that, in general, all the four seeding strategies can help to improve the overall
QoS of service composition better and quicker with negligible running over-
head. Yet, they may involve relatively smaller compromise on one or two of
the quality aspects among convergence, uniformity and spread. In particular,
we have also obtained the following important observations:

• Eliminating or having less crossover is harmful for multi-objective ser-
vice composition optimization, but the seeding strategies exhibit much
less sensitivity than their NONE counterparts.

• For both H-Seed and R-Seed, the seeds do not have to come from the
most similar problems in order to reach the best results. However, the
most distinct historical problem should be avoid in general.
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• Unlike the discoveries for other problem domains [7][18], we did not
observed significant implication of the number of seed on the overall
QoS of service composition in general (except for AO-Seed and SO-
Seed under IBEA), because only the composition plans evolved from
the seeds can survive in the final solution set. As a results, for all the
proposed seeding strategies, how many seeds is less important as long
as there is good seed for the MOEA to start working with.

In future work, we plan to improve the seeding strategies by systemati-
cally combining more complex knowledge represented in software engineering
notations, e.g., the Goal Model. We will also study the case of more than
three QoS attributes, in which seeding is expected to be more important as
the objective space enlarges.
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