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Abstract—Given the on-demand nature of cloud computing, 
managing  cloud-based  services  requires  accurate  modeling  for 
the correlation between their Quality of Service (QoS) and cloud 
configurations/resources. The resulted models need to cope with 
the  dynamic  fluctuation  of  QoS  sensitivity  and  interference. 
However, existing QoS modeling in the cloud are limited in terms 
of both accuracy and applicability due to their static and semi-
dynamic nature. In this paper, we present a fully dynamic multi-
learners approach for automated and online QoS modeling in the 
cloud.  We  contribute  to  a  hybrid  learners  solution,  which 
improves accuracy while keeping model complexity adequate. To 
determine the inputs of QoS model at runtime, we partition the 
inputs space into two sub-spaces, each of which applies different 
symmetric uncertainty based selection techniques,  and we then 
combine the sub-spaces results. The learners are also adaptive; 
they simultaneously allow several machine learning algorithms to 
model QoS function and dynamically select the best model for 
prediction  on  the  fly.  We  experimentally  evaluate  our  models 
using  RUBiS  benchmark and realistic  FIFA 98 workload.  The 
results show that our multi-learners approach is more accurate 
and effective in contrast to the other state-of-the-art approaches.

Index  Terms—QoS  modeling,  sensitivity,  QoS  interference, 
prediction, machine learning, multi-learners, cloud computing. 

I. INTRODUCTION 

Cloud-based  services  provided  as  Software-as-a-Service 
(SaaS) are typically running on top of the software stack within 
the  Platform-as-a-Service  (PaaS)  layer  [3].  They  are  also 
supported by the Virtual Machines (VM) and hardware within 
the  Infrastructure-as-a-Service  (IaaS)  layer  [4].  To  offer 
elasticity under changing external environment conditions (e.g., 
workload, size of incoming job etc.), cloud service providers 
often dynamically scale various internal control knobs, which 
provide on-demand configuration of software (e.g., threads of 
service/application)  and  hardware  resources  (e.g.,  CPU  and 
memory of VM) in a shared infrastructure. In this work, we 
refer to  both control knobs and environment conditions in the 
cloud  as  primitives.  The  key  problem,  which  cloud/service 
providers face is how to manage runtime Quality of Service 
(QoS) by autoscaling to the best set of control values. By QoS, 
we  refer  to  the  non-functional  attributes  (e.g.,  throughput) 
experienced by the end-users of the cloud-based services. In 
particular, the fundamental challenge is how to link QoS with 
the primitives in cloud, which we address in this paper.

QoS models allow the use of primitive values as inputs and 
predict the likely QoS value as an output. These models can 
better express QoS sensitivity; by sensitivity, we are interested 

in  which (e.g.,  are  throughput  and  CPU correlated?),  when 
(i.e., at which point in time they are correlated?) and how (i.e., 
the  magnitude  of  primitives  in  correlation)  the  primitives 
correlate with QoS. An accurate QoS model in the cloud can 
serve  as  a  powerful  tool  to  reason  and  compare  the 
consequences  of  different  elastic  autoscaling  strategies. 
However,  the  difficulty  is  that  the  QoS sensitivity  tends  to 
fluctuate at runtime. In addition, QoS modeling in the cloud 
suffers from the problem of QoS interference, which we refer 
to scenarios where a service exhibits wide disparity in its QoS 
performance due to the fluctuation in primitives of co-located 
services  on  the  VM  and  co-hosted  VMs  on  the  Physical 
Machine  (PM)  [24,15].  This  is  a  typical  consequence  of 
resources  contention.  The  QoS  interference  is  uncertain  in 
nature; because it is difficult to know when contention would 
occur  and  what  the  degree  of  such  contention  is.  These 
runtime uncertainties urge the need for a  fully dynamic and 
online modeling approach that continuously evolves itself. 

The majority of the work on QoS modeling in cloud has 
been either static (e.g., queuing network [9]) or semi-dynamic 
[10-15]. The effectiveness of static approaches is restricted by 
their  simplified  assumptions on service's  internal  operations 
[10], which limits them for online QoS modeling in cloud. In 
addition, they do not take QoS interference into account. On 
the  other  hand,  semi-dynamic  approaches  are  either  online 
[10-14] or offline [15]. The main difference between them is 
that the offline models tend to be limited in the way they cope 
with the unexpected changes at runtime [10]. They are called 
'semi-dynamic'  because  both  online  and  offline  approaches 
focus on dynamically  model  the magnitude of  primitives  in 
correlation  to  QoS;  while  the  selection  of  primitives  to 
determine the features of models has been fixed and offline 
(e.g., only consider CPU and memory as inputs).

Existing  semi-dynamic  approaches  tend  to  be  limited 
because: (i) they do not consider software configuration (e.g., 
thread), which can interplay with the hardware provisions to 
influence  QoS [20,24];  (ii)  It  is  well-known that  primitives 
selection can improve model accuracy [22],  however,  given 
the  increasing  variability  of  software  configuration  and 
application/service  type  in  the  cloud,  the  fixed  selection 
requires  heavy  human  intervention  [10]  and  can  result  in 
considerable complexity and difficulty in its application. This 
is especially true when the primitives can influence the QoS in 
a dynamic and joint fashion: e.g., the service and its QoS tend 
to be sensitive to CPU only if the service  thread and/or the 



CPU of co-hosted VM are set to a high value; (iii) The cloud 
suffers  uncertain  workload,  VM  deployment  and  QoS 
interference. Henceforth, the fixed selection of primitives can 
become invalid at runtime and mislead the modeling.

In previous work [8], we have proposed a fully dynamic, 
fine-grained and online QoS modeling approach for handling 
QoS  sensitivity  and  interference.  The  approach  combines 
symmetric uncertainty [21], an efficient measurement of data 
relevance  for  feature  selection  [8,22],  with  two  alternative 
machine  learning  algorithms,  which  are  Auto-Regressive  
Moving Average with eXogenous inputs [18] (ARMAX) and 
Artificial  Neural  Network [17]  (ANN)  to  reach  two 
formulations  of  the  model.  This  solution  and  other  existing 
modeling approaches [10-15] are called single learner-based as 
they apply single primitives selection technique and learning 
algorithm  to  model  QoS.  We  have  shown  in  [8]  that  the 
previously proposed approach is able to achieve better accuracy 
in contrast to existing semi-dynamic approaches. However, our 
subsequent investigations have revealed several limitations of 
such approach. Firstly, it ignores the QoS interference caused 
by  VMs  co-hosted  on  the  same  PM  [24,15].  Secondly,  the 
single learner approach can easily result in a QoS model with 
large numbers of inputs due to its over-sensitive handling in 
QoS interference. This will unnecessarily complicate the model 
and  downgrade  the  prediction  accuracy.  Thirdly,  we  have 
observed  that  different  learning  algorithms  (e.g.,  ANN  and 
ARMAX)  can  be  suitable  only  for  certain  QoS  trends; 
however,  a single learner  approach requires  the  engineers to 
predetermine the suitable  learning algorithm. This  can entail 
manual and extensive investigation rendering it as an expensive 
process. Moreover, a predetermined approach does not cater for 
unexpected or envisioned  changes in QoS at runtime.

In this paper, we propose an online QoS modeling approach 
to overcome the above limitations using hybrid and adaptive 
multi-learners. In particular, our novel contributions include:

Firstly,  our  previous work modeled QoS interferences of 
services co-located on a VM. This work, however, additionally 
factors interferences caused by VMs co-hosted on a PM.

Secondly,  for  primitives  selection,  we  propose  a  hybrid 
multi-learners  approach  to  determine  which and  when 
primitives correlates with the QoS on the fly. The idea is that 
we aim to select the relevant and useful primitives which can 
improve accuracy in the modeling. To this end, we partition the 
primitives space into two sub-spaces; the learner in each sub-
space uses different primitives  selection techniques based on 
symmetric uncertainty [21] and the results of the two learners 
are combined. Increasing the number of  space partitions can 
introduce computational overhead, thus we used two partitions 
and we found out that it produces adequate accuracy. 

Thirdly,  we develop an adaptive multi-learner solution to 
dynamically model how the primitives correlates with the QoS. 
Precisely,  multiple  learners  that  apply  different  learning 
algorithms are used to build a bucket of models. By doing so, 
we aim to dynamically select the best learning algorithm and its 
resulted model during prediction in cloud. Particularly, we have 
examined three widely used learning algorithms as exemplars, 
these are: ANN, ARMAX and Regression Tree (RT) [19]. 

Fourthly, we implement our modeling approach based on 
an  autonomic  architecture  in  the  cloud.  We  experimentally 
evaluate  the  approach  under  four  commonly  used  QoS 
attributes, these are: response time, throughput, availability and 
reliability. In addition, we have used the well-known RUBiS [6] 
benchmark and the FIFA 98 [7] workload. The results reveal 
that our approach is effective and has acceptable overhead. 

In  the  following,  Section  II  decomposes  the  problem of 
QoS modeling and presents the model.  Section III  describes 
our  architecture  and  overview  of  the  approach.  Section  IV 
specifies  the  hybrid  and  adaptive  multi-learners.  Section  V 
reports  on  experiments  and  evaluation.  Section  VI  and  VII 
present related work and conclusion respectively.

II. MODELS AND PROBLEM ANALYSIS

A. Cloud System Model

We assume that cloud-based applications are composed of 
services,  each  has  different  QoS  requirements  and  external 
environment  changes  (e.g.,  changes  in  workload).  These 
applications  and  services  are  deployed  on  a  cloud  software 
stack,  which  can  be  setup  using  various  control  knobs.  In 
addition,  they  are  hosted  on  the  cloud  infrastructure  where 
resources are shared via VMs. Often, multi-tiers applications 
and services in the cloud can have multiple replicas for load 
balancing  purpose.  Therefore  we  assume that  each  tier  in  a 
multi-tiers application, consisting of concrete services {S1,  S2, 
… Si}, can have multiple replicas deployed on different VMs 
even PMs; the replicas of a tier can also consist of the replicas 
of services  that  was originally contained by this tier.  In  this 
work, we refer to the replicas of concrete services as service-
instances: the jth service-instance of the ith concrete service is 
denoted  by  Sij.  Unlike  existing  work  [13],  which  focus  on 
modeling for the entire application and VM, we aim to create 
fine-grained  QoS  models  for  each  service-instance.  In 
particular,  the  resulted  models  should  cope  with  the  QoS 
interferences  at  both  inter-VMs  and  inter-services  level.  In 
addition,  instead  of  modeling  the  effect  of  VM-level 
provisioning (i.e. add/remove a VM), we focus on the effect of 
fine-grained  provisioning  inside  VM  (e.g.,  CPU  of  a  VM 
and/or  maxThread of a service-instance). This would provide 
more flexible use of the model (e.g., vertical scaling) and has 
been  becoming a  trend in  cloud.  It  is  important  to  consider 
vertical scaling before horizontal scaling (e.g., add, remove or 
migrate VMs) as the former is often much more efficient than 
the later.

It is  worth noting that,  apart from the co-hosted services 
and co-located VMs, QoS interference can also occur due to 
contention on the functionally dependent services. For instance, 
S11  and  S31 (both  running  on  different  PMs)  can  be  both 
dependent on S21 (e.g., a database service). This implies that S11  

and S31 incur QoS interference. However, we discovered that in 
such case, the primitives of  S31 tend to be insignificant in the 
QoS modeling of S11 as the same information has already been 
expressed by the primitives of  S21,  which is also part of the 
invocation. As a result, we consider the co-hosted services and 
co-located VMs as the primary causes of QoS interference. 



Fig. 1.  The primitives decomposition (left) and partitioning (right) 

B. Cloud Primitives Decomposition and Partitioning

To achieve better generality, we decompose the notion of 
primitives into two major domains: these are Control Primitive  
(CP) and  Environmental  Primitive (EP).  Control  Primitives 
are  the  internal control knobs  and  can  be  either  software  or 
hardware, which  can be  managed by the  cloud providers  to 
support  QoS.  Specifically,  software  control  primitives  are 
software  tactics  and  configurations;  such  as  the  number  of 
threads  in  thread  pool  of  service/application,  the  number  of 
database connections and load balancing policies etc. Whereas, 
hardware control primitives are computational resources, such 
as CPU and memory. As shown in Figure 1 (left), software and 
hardware control primitives rely on the PaaS and IaaS layers 
respectively. In particular, it is non-trivial to consider software 
control  primitives  when modeling QoS in the cloud as  they 
have been shown to be important features for QoS [20,24]. On 
the other hand,  Environmental Primitives refer to the external 
stimulus that cause dynamics and uncertainty in the cloud; for 
examples, workload and unpredictable incoming data etc. If the 
cloud provider is able to control the presence of the stimulus, 
then these can be then considered as control primitives. 

To prevent noises and improve accuracy, selecting the right 
primitives as inputs is critical for QoS modeling in the cloud. 
However, the difficulty is that the primitive inputs, which are 
relevant and useful for modeling QoS in the cloud tend to be 
dynamic [24]. All possible primitives inputs for modeling the 
QoS attributes of a service-instance form a space, which we 
call possible relevant primitives space; the problem is to select 
on the fly a relevant and useful subset of primitives from the 
space for modeling QoS. This space can be defined by:
Rule  1: A  primitive  belongs  to  the  possible  relevant  primitives  
space for modeling the QoS of Sab if: 

1) it is a software control or environmental primitive of Sab, or 
2) it is a hardware control primitive of the VM that runs Sab, or
3) in case of Sab has direct functional dependency on Scd, it is a 

software control or environmental primitive of Scd, or
4) in case of Sab has direct functional dependency on Scd, it is a  

hardware control primitive of the VM that runs Scd, or
5)  it  is  a  software control or  environmental  primitive  of  S cd,  

which is co-located with Sab on the same VM, or
6) it is a hardware control primitive of the VM, which is co-

hosted with the VM that runs Sab on the same PM.

We tackle the problem of selecting useful primitives using 
symmetric  uncertainty [21],  which  measures  the  degree  of 
relevance  between two time series  variables  by producing a 
value  ranges  from  0  to  1  -  a  greater  value  implies  higher 
relevance.  At one extreme, the value between a QoS attribute 
and  a  primitive  is  1  indicating  that  all  information  of  the 

primitive is  correlated with the QoS (and vice versa).  At the 
other  extreme,  the  value  of  0  implies  that  changes  in  the 
primitive’s  behavior  are  independent  of  that  of  the  QoS. 
Formally, symmetric uncertainty is calculated by:

 U(X,Y)= 2×∑ y∈Y ∑ x∈ X p( x , y )log ( p( x , y)
p (x )× p( y) )

∑ x∈ X p( x)log( p( x))+∑ y ∈Y p( y)log ( p( y ))
 (1)

where X and Y are two series of values over time (e.g, a QoS 
attribute  and  a  primitive);  x and  y are  one  of  these  values. 
p(x,y) is the joint probability between two values and p(x) is 
the marginal  probability  of  a  value. Analysis  of the data  of 
symmetric  uncertainty  values  in  [8]  showed  that  for  each 
feature dimension, certain primitives tend to be more relevant 
to the QoS than others, e.g., the CPU of the underlying VM 
usually has greater values than the CPU of co-hosted VMs; this 
fact motivates us to partition the  possible relevant primitives  
space based on the relevance between primitives and QoS. By 
clustering on the symmetric uncertainty values of primitives; 
we found that using two sub-spaces can improve accuracy and 
reduce  model  complexity  without  having large  overhead,  as 
shown in Section V. These two sub-spaces are named: direct  
primitives space and  indirect primitives space;  the former is 
usually more relevant to the QoS than the later. Our aim is to 
select and update the subsets of primitives from these two sub-
spaces  on  the  fly,  as  we  will  see  in  Section  IV-B.  We 
discovered that the direct primitives space can be defined by:
Rule  2: A  primitive  belongs  to  the  direct  primitives  space  for  
modeling the QoS of Sab if it meets conditions 1, 2, 3 or 4 in Rule 1.

On the other hand, the indirect primitives space, which mainly 
contains the information related to interference, is defined by:
Rule 3: A primitive  belongs  to  the  indirect  primitives  space for  
modeling the QoS of Sab if it meets conditions 5 or 6 in Rule 1.

An example of the partitions is shown in Figure 1 (right). Also, 
start and stop VMs can trigger re-partition based on Rule 1-3. 

C. QoS Model for Interference

The generic online model for the kth QoS attribute of Sij  at 
a given sampling interval t is formally expressed as:

QoS k
ij( t)= f (SP k

ij(t ) ,δ)  (2)

where  QoS k
ij ( t)  is  the  discrete  or  mean value  (e.g.,  average 

response time) of the kth QoS attribute of Sij from  t-1 to t. f is 
the QoS function, which changes at runtime, as we will see in 
Section IV-D. δ refers to any other inputs (e.g., historical time-
series  QoS points  and  tuning  variables  etc)  required by  the 
algorithm to train  f  apart from the primitives. To handle QoS 
interferences, we denote input SP k

ij(t) in Eq. 2 as the selected 
primitives matrix of QoS k

ij( t)  at t, formally depicted in Eq. 3. 

SP k
ij( t )=[ CPa

xy ( t ) ... EPb
mn( t−1 ) ...

... ... ... ...
CPa

xy ( t−q+1 ) ... EPb
mn( t −q ) ... ]  (3)

This  matrix  contains  the primitive  inputs  of  QoS k
ij( t)  

selected from the  possible relevant primitives  space for QoSs 
of  Sij,  as  we will  see in Section IV-B.  More concretely,  the 
column entries  indicate  which  and when primitives  correlate 
with the QoS.  q determines the number of row entries, which 
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indicates the use of how many historical time-series points of 
the  selected  primitives  as  inputs  can  impact  the  learning 
algorithm that trains f. We observed that it is better to set q as 
constant  for certain algorithms (e.g.,  q=1 for ANN and RT); 
however for the others (e.g., ARMAX), we found that q should 
be determined during training via  hill-climbing optimization, 
which starts with q=1, then automatically increase the number 
of  row entires  one  by  one  during  training  till  the  accuracy 
cannot  be  further  improved  [8].   CPa

xy (t )  and  EPb
mn( t−1)  

denote  the  ath control  primitive  of  Sxy  and  the  bth 
environmental primitive of  Smn respectively. The actual values 
of  CPa

xy (t )  and EPb
mn( t−1)  that used in the modeling are the 

mean  of  measured  data  from  t-1 to  t and  from  t-2 to  t-1 
respectively.  To  dynamically  train  the  QoS  function  f,  we 
investigate  three  most  widely-used  learning algorithms form 
the  literature,  these  are  ARMAX,  ANN  and  RT.  In  the 
following, we briefly explain these learning algorithms: 

Auto-Regressive Moving Average with eXogenous inputs -  
ARMAX  [18]  models  the  correlation  between  QoS  and 
primitives as a linear relation and it  captures the time-series 
information into the model. In this work, we train the ARMAX 
using linear Least Mean Square (LMS) approach [27]; and the 
q is determined using hill-climbing algorithm  that starts with 
q=1, then automatically increase the number of row entires one 
by one during training till it reaches good accuracy [8]. 

Artificial  Neural  Network  -  ANN  [17]  is  a  powerful 
supervised learning algorithm, which is capable for modeling 
complex nonlinear correlations. This is achieved by weighting 
the inputs and transforming them using activation function to 
produce  the  output.  In  this  work,  we  use  three  layers  and 
Sigmoid function in the network as this setup tends to relief the 
issue  of  local  minima.  ANN is  trained  using  a  well-known 
technique, namely the Resilient backPROPagation  (RPROP) 
[25]. We found that use q=1 (i.e., no time series information) 
can produce the best  result;  and the right number of  hidden 
neurons  is  determined  using  hill-climbing  algorithm  during 
training till the accuracy cannot be further improved [8]. 

Regression Tree - RT [19] is a learning algorithm that maps 
the relation of primitives and QoS into a tree-like structure, in 
which  leaves  represent  class  labels  and  branches  express 
conjunctions  of  features  to  reach  these  labels.  The  tree  is 
trained using the Classification and Regression Trees (CART) 
technique [26] and we found that use q=1 (i.e., no time series 
information) can produce the optimal results. 

To  adaptively  model  a  given  QoS k
ij ( t)  online,  our  QoS 

modeling  approach  consists  of  two  phases:  (i)  a  primitives 
selection  phase  that  determines  the  content  of  SP k

ij(t)  at 
runtime using hybrid multi-learners;  and (ii)  a QoS function 
training  phase  that  trains  function  f  on the  fly  via  adaptive 
multi-learners. Finally,  the  adaptive  multi-learners  select  the 
best model to predict QoS. 

III. OVERVIEW OF THE ONLINE QOS MODELING APPROACH IN CLOUD

As  shown  in  Figure  2,  the  approach  is  realized  as 
middleware using autonomic architecture with a feedback loop. 
The  service-instances  running  on  the  VMs  of  a  PM  are 
managed by a dedicated Middleware Instance  (MI),  which is 

Fig. 2.  Overview of the modeling approach in cloud

attached to the root domain (e.g.,  Dom0 [5]) of this PM. The 
feedback loop runs continuously to keep the models updated.

Our  approach  is  designed  for  online  scenarios;  the  only 
offline  preparation  is  to  define  the  current  service-instances, 
their QoS and primitives spaces (i.e., using Rule 1-3). This data 
should be updated accordingly if changes occur. However, the 
approach  can  be  also  used  offline  in  situations  where 
conducting  offline modeling in  advance can further  improve 
the online models. Within the feedback loop,  Data Collector  
continuously monitors  and stores  sample-values  of  QoS and 
primitives from the service-instances/VMs of a PM, and those 
from the other PMs in the presence of functional dependency. 
This can be achieved  by accessing the cloud sensors  or  log 
files. For each QoS attribute of a service-instance, all historical 
data  is  then  passed  to  the  primitives  selection  phase for 
determining  which and  when primitives correlate with QoS at 
runtime (step 1).  Here,  we have  used two learners  to  select 
primitives from the  direct and  indirect primitives spaces (see 
Section IV-B).  At  step 2,  the  selected sets  of  primitives  are 
combined and sent to the QoS function training phase, where 
multiple learners are used to model how the primitives correlate 
with  QoS  online  (step  3).  At  step  4,  each  QoS  attribute  is 
associated  with  a  bucket  of  models  produced  by  candidate 
learners and an evaluation function; in addition, the weights in 
the evaluation function will  be  updated.  This  bucket  can  be 
then used by, e.g.,  an  Autoscaler at any time (step 5).  Upon 
prediction when given a set of inputs, the evaluation function is 
used to select the best model in the bucket (see Section IV-D).

IV. MOTIVATION AND DESIGN OF THE MULTI-LEARNERS

A. Limitation of Single Learner in Primitives Selection

As  shown  in  Eq.  2  and  Eq.  3,  to  dynamically  model 
QoS k

ij( t)  at runtime, we first determine  which and  when the 
underlying primitives should be included as column entries in 
SP k

ij(t )  for the QoS modeling. In our previous work [8], we 
have  approached  the  primitives  selection  problem  using  a 
single learner with  maximal Relevance  (mR) technique based 
on symmetric uncertainty [21]. More precisely, we have used 
this  technique  to  select  primitives  from  the  entire  possible  
relevant  primitives  space  for  the  QoSs  of  a  given  service-
instance.  A primitive  is  said  to  be  correlated  with  a  QoS 
attribute if their symmetric uncertainty value is greater than 0. 
We have shown that this technique produces better accuracy in 
contrast  to the semi-dynamic models [8].  However, we have 
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observed that a single learner based mR technique constantly 
results  in  a  large  number  of  selected primitives  in  the  QoS 
model. This will result in an overcomplicated model, which can 
cause the following problems: firstly, it renders the decision for 
selecting  the  right  elastic  strategy  difficult  when  using  the 
model. Secondly, certain learning algorithms can easily over-fit 
the model and thus affect its accuracy. 

To cope with this issue, we examined the data produced by 
the mR approach from [8] while keeping the total number of 
considered services and primitives unchanged. We have found 
that reducing the indirect primitives space in the modeling can 
improve  accuracy.  On  the  other  hand,  reducing  the  direct  
primitives  space in the modeling can downgrade the accuracy 
as  important  information  tends  to  be  eliminated.  This  is 
because the direct primitives are able to affect QoS by directly 
controlling the utilization in different dimensions, which means 
they can provide different aspects of information; whereas all 
the indirect ones can only do so via contention, thus they can 
only provide information about contention and this means that 
the information  redundancy  becomes  a  problem.  In  other 
words, a newly selected primitive can indeed be relevant to the 
QoS but the same information has already been provided by 
another  selected  primitive,  which  has  higher  relevance.  This 
fact  implies  that  the  magnitude of  the  new  primitive  is 
insignificant to the QoS and can downgrade the accuracy [22]. 
Therefore, the high redundancy can be due to over-sensitive 
modeling for QoS interference in the indirect primitives space.

B. Hybrid Multi-Learners for Primitives Selection

To  tackle  the  above  issues,  we  design  a  hybrid  multi-
learners solution for handling the QoS interference. Precisely, 
instead of using all relevant primitives as inputs, we select the 
ones that not only relevant but also useful in the modeling. By 
doing so, we aim to improve accuracy and maintain adequate 
model  complexity.  The  hybrid  solution  employes  different 
selection techniques and produces an ensemble result online. 
Unlike the single learner based techniques that select primitives 
in the entire primitives space, we independently focus on the 
partitioned  direct and  indirect primitives space. As shown in 
Figure 2, for each QoS attribute of a given service-instance, we 
use  a  mR-based  learner  and  a  maximal  Relevance  Minimal  
Redundancy  (mRMR)  based  learner  to  dynamically  select 
useful  primitives  in  the  direct and  indirect  primitives  space 
respectively. The use of mRMR is inspired by the work of [22], 
which  applies  this  technique  for  feature  selection  in 
classification  algorithms.  Specifically,  the  objective  of  mR-
based learner in the  direct primitives space is to continuously 
select the number of primitives that maximizes Eq. 4:

max Ψ( X , y ) , Ψ=∑x∈X
n U (x , y) , s.t.U (x , y)>0  (4)

where  x and  y are series of values of a primitive and a QoS 
attribute respectively. X denotes the direct primitives space and 
n is the number of primitives, which has been already selected. 
U is the function of symmetric uncertainty (Eq. 1). Since the 
value of U cannot be negative, Eq. 4 can be solved by selecting 
any primitives that results in non-zero value with the QoS.

On  the  other  hand,  we  use  a  similar  approach  for  the 
indirect  primitives but  with  additional  consideration  of 

information  redundancy.  Formally,  the  objective  of  mRMR-
based learner in the indirect primitives space is to continuously 
select the number of primitives that maximizes Eq. 5:

maxΦ( X , y) ,Φ =
∑x ∈ X

n U ( x , y )
1+∑x , x '∈ X U ( x , x ' )

, s.t.U (x , y)>0 (5)

where  x' is also a series of concrete values of a primitive.  X 
denotes  the  indirect  primitives space;  and  the  remaining 
notations are  the  same as  in  Eq.  4.  In  this  work,  we apply 
incremental  random search to  optimize Eq. 5 for  simplicity; 
however,  it  can  be  easily  replaced  by  more  sophisticated 
algorithms. Finally,  the  selected  sets  from both  learners  are 
combined. 
Algorithm 1 Hybrid multi-learners for primitives selection

Inputs: given  a  QoS  attribute  QoS k
ij ,  the  associated  direct  

primitives space Dij  and indirect primitives space IDij .
Declare: C direct   - the collection of selected direct primitives.
               C indirect  - the collection of selected indirect primitives.
Outputs: the  column  entries  of  the  selected  primitives  matrix 
SP k

ij(t)
1. start interval t
2.      C direct :=∅ ,C indirect :=∅
3.      C direct :=optmize Ψ( D ij , QoSk

ij) via Equation 4

4.      C indirect :=optmize Φ( IDij ,QoS k
ij) via Equation 5

5.      column entiresof SP k
ij( t) :=Cdirect∪C indirect

6. end interval t

An algorithmic description of the primitives selection phase 
has been illustrated in Algorithm 1. We will show (in Section 
V-B) that the proposed hybrid multi-learners technique leads to 
better accuracy as when compared to other single learner based 
and fixed solutions.

C. Limitations of Single Learner in QoS Function Training

Recall  from  Eq.  2,  once  the  primitives  in  SP k
ij(t)  are 

selected, our next goal for QoS modeling is to determine how 
those primitives correlate with QoS k

ij( t)  in the QoS function f. 
Previously we have evaluated two alternative machine learning 
algorithms, ANN and ARMAX, in the single learner to train f 
[8].  The  experimental  results  suggest  that  these  learning 
algorithms  perform quite  differently  depending  on  the  QoS 
fluctuation  trends  and  primitives  combination.  This  result 
indicates that given the generality of the proposed QoS model, 
the single learner  is  limited as  we can not  determine  which 
learning  algorithm  to  use  without  expensive  and  extensive 
analysis.  In  addition,  even  such  process  is  performed,  the 
offline analysis can still become invalid at runtime. 

D. Adaptive Multi-Learners for QoS Function Training

To overcome the above limitations, we propose an adaptive 
multi-learners technique for updating QoS function f on the fly 
and predicting the QoS values, as in Figure 2. The technique 
has two main processes, namely training and prediction. At the 
training process, we simultaneously apply different learners to 
train the same QoS function  f,  but each of the learners uses 
different learning algorithm to build a model. At the prediction 
process, we evaluate these learning algorithms by comparing 



the resulted models within the bucket on the fly; the model of 
the best learning algorithm is used to predict QoS. 

One of the most critical design decisions is to determine the 
evaluation  function  that  compares  the  models  produced  by 
candidate learners. The basic method would be based on global 
mean error  of  all  historical  samples.  However  as  shown by 
[10], given a set of primitive values as inputs, the most accurate 
model using these inputs might not be the one that has the best 
global error. This is because the accuracy of a model can be 
sensitive to the local construct of given inputs, including the 
variation of possible combination, scale and granularity, etc. As 
a result, our evaluation function aims to compare both the local 
error of a given inputs set produced by a model and the global 
error of the said model. To measure the prediction error of QoS 
over n samples, we use Symmetric Mean Absolute Percentage  
Error (SMAPE) [23], calculated as 100× 1

n ∑t =1
n ∣predicted ( t)−actual (t)∣

predicted ( t)+actual (t)  
for the total of n modeling intervals.

An algorithmic description of the training process has been 
shown in Algorithm 2. At the training process, as the collected 
online data increases, we continuously train two QoS models 
for each learner (line 2-5): (i) A main-model that uses 100% of 
the collected online data;  (ii)  A  sub-model,  which is  trained 
based on 70% of the total collected data. The sub-model is used 
to test local and global error for its main-model of a learner. In 
particular,  it  tests  the  QoS  prediction  error  against  the 
remaining 30% testing data - the split of training and testing 
data  follows standard  machine  learning approach  for  testing 
generalization  errors.  These  generalization  errors  and  their 
corresponding  samples  within  the  testing  data  serve  as  the 
local  error  patterns of  the  main-model.  Finally,  the  main-
model, sub-model and local error patterns are put in a bucket.

An  algorithmic description of  the  prediction  process  has 
been shown in Algorithm 3. The prediction process is triggered 
when there is need to perform prediction. In particular, the best 
main-model in the bucket is used as the final model to predict 
QoS. To calculate the local error of a main-model, we leverage 
on the prediction error of its sub-model for each sample within 
the testing data, as recorded in the local error patterns (line 3-
9). When given a set of inputs for predicting QoS, the local 
error  of  a  main-model is  determined  by  extrapolating  the 
similarity  between  the  given  set  of  inputs  and  each  sample 
from local error patterns; the error of the most similar sample 
is  used  as  the  local  error  (line  4-7).  To  this  end,  we  apply 
symmetric  uncertainty based  Euclidean Distance  to  measure 
the similarity. As shown in Eq. 6,  d is the distance of the given 
set of inputs against a sample in the local error patterns.  

d=√∑x∈ X (SU x×(P x−P ' x)
2)  (6)

 Px and P'x  respectively denote the value of xth primitive in 
the given set of inputs and the value of the same primitive in a 
sample  from  local  error  patterns.  SUx is  the  symmetric 
uncertainty  value  between  the  xth primitive  and  the  QoS 
attribute. The sample that results in the smallest  d is the one 
that we are seeking, then its corresponding error is used as the 
local error of the main-model (line 9). 

Algorithm 2 Training process in adaptive multi-learners

Inputs: given the column entries of SPk
ij( t )  form Algorithm 1 and 

a set of candidate learning algorithms
Declare: <Mmain, Msub, L> - a vector of main-model, sub-model  
                                            and its  local error pattern.
               bucket                - a collection of model vectors.
Outputs: a bucket of model vectors for a QoS attribute QoS k

ij

1. simultaneously, for each candidate learning algorithm do
2.     find the optimal number of row entries (i.e., the value of q
           in Eq. 3) for SPk

ij(t )  if it has not been predefined for this
           learning algorithm.
3.     train main-model Mmain  and sub-model Msub using  SP k

ij( t)
4.     test the sub-model for building local error pattern L
5.     bucket := bucket ∪ <Mmain, Msub, L> 
6. end for

Algorithm 3 Prediction process in adaptive multi-learners

Inputs: given a set of inputs P and the bucket from Algorithm 2
Declare: S          - the current sample
               Sselected   - the most similar sample to P
               d          - the distance between P and the current sample
               dsmallest   - the smallest distance between P and a sample
               Elocal     - the local error of the current main-model
               Eglobal    - the global error of the current main-model
               E          - the final error of the current main-model
               Esmallest  - the smallest final error of a main-model
               Mselected  - the selected main-model for prediction
Outputs: the predicted QoS value of QoS k

ij

1. start prediction
2.    for each  <Mmain, Msub, L>  in the bucket of  QoS k

ij  do
3.         for each sample S in the local error pattern L of Msub do
4.             calculate distance d between P and S using Equation 6
5.             if dsmallest  > d then
6.                     dsmallest := d,   Sselected := S
7.             end if
8.         end for
9.         get the error of Sselected as the local error Elocal of Mmain  
10.       get the global error Eglobal of Mmain  
11.       evaluate final error E of  Mmain  using Equation 7
12.       if  Esmallest  > E then
13.           Esmallest := E,   Mselected := Mmain 
14.       end if
15.    end for
16.    predict(P) using the selected main-model Mselected  
17. end prediction

On the other hand, the global error of a main-model is the 
mean  errors  of  all  samples  within  the  30%  testing  data 
produced  by  its  sub-model (line  10).  Finally,  the  evaluation 
function selects the best  main-model for a given set of inputs 
by examining on both the local and global error of all  main-
models in the bucket, as formally depicted in Eq. 7 (line 11-14). 

Ei=α×E local
i +β×E global

i  (7)

where Ei ,  Elocal
i and E global

i  denote the final, local and global 
error of the  ith main-model respectively.  α  and  β  are two 
heuristics expressing the relative importance of local and global 
errors. We have set the initial value of α  and β  as 0.1, which 
means the local and global error are equally important from the 



beginning. The selected main-model and its learning algorithm 
for a given inputs is the one that has the smallest Ei  (line 16). 

To  capture the right weight of local and global errors,  α  
and β  are updated via Eq. 8 when new data is collected.

α=α+Δα ,β=β+Δβ

s.t. {Δα=eα=0,β=1−eα=1,β=0 if eα=1,β=0<eα=0,β=1

Δβ=eα=1,β=0−eα=0,β=1 if eα=1,β=0>eα=0,β=1

 (8)

Specifically,  eα=1,β=0  is  the  prediction  error  of  new data 
produced by the selected  main-model when  α=1  and  β=0 . 
Similarly,  eα=0,β=1 is the error produced by the selected main-
model when α=0  and β=1 . In this way, the error that is more 
useful in the selection will gradually gain more importance.

As mentioned in Section II-C, we employ three different 
learning  algorithms  (i.e.,  ARMAX,  ANN  and  RT)  in  the 
adaptive  multi-learners.  Our  approach  is  flexible  as  new 
algorithms  can  be  added  or  old  algorithms  can  be 
removed/substituted  if  needed.  The  online  training  of  these 
learning  algorithms  follows  standard  machine  learning 
procedure,  interested readers could refer to our previous work 
[8]  (ANN and ARMAX) and [14] (RT) for detailed training 
process in the cloud; and [17,18,19] for their detailed formulas.

V. EXPREIMENTS AND EVALUATION

To  evaluate  our  approach,  we  experimentally  assess  its 
accuracy  and  overhead. The  testbed  is  a  private  cloud  with 
numbers  of  PMs,  each  of  which  has  Intel  i7  2.8GHz Quad 
Cores and 4GB RAM. The PMs use Xen [5] as the hypervisor 
and the modeling process is running on Dom0. To eliminate the 
interference caused by modeling, we allocated one CPU core 
and 1.2GB RAM to  Dom0, which tends to be sufficient. Our 
approach is implemented as a middleware based on Encog [2] 
and  Apache  Mathematics  [1]  using  Java.  To  simulate  QoS 
interference  caused  by  the  VMs  while  not  exhausting 
resources,  we  run  three  co-hosted  VMs  on  each  PM;  the 
remaining resources are evenly allocated to the co-hosted VMs.

Our experiments leverage on RUBiS [6], which is a cloud-
based application consists of 26 co-located services using the 
eBay.com  model.  For simplicity,  we have  used  three  RUBiS 
snapshots, each of which consists of a 2-tiers (i.e., application 
and database tiers) based  RUBiS application; the three  RUBiS 
snapshots differ in terms of the database volume size ranging 
from 1GB to 5GB data. Each RUBiS snapshot is deployed with 
a software stack including Tomcat and MySQL on each co-
hosted VM of a master PM; and we have implemented sensors 
deployed  on  each  service-instance  and  VM for  sending  the 
online data to Data Collector. For each RUBiS snapshot on the 
master PM, the application tier is replicated to all other PMs in 
the cloud; and the replicated application tiers of each of the 
three  RUBiS  snapshots  are  linked  to  three  dedicated  load 
balancers.  Three  client  emulators  are  used  and  they  apply 
read/write pattern to generate requests for each load balancer.

To simulate a realistic workload within the capacity of our 
testbed, we vary the number of clients proportionally according 
to the FIFA98 workload [7], which is compressed in the way 
that the fluctuation of a day in the trend corresponds to 200 
secs in our case.  This  setup  can  generate  up  to  400  parallel 

TABLE I.  THE EXAMINED QOS ATTRIBUTES AND PRIMITIVES

QoS and primitive Description

Output

Response time (ms) The leaped time between the service-
instance receives and replies a request. 

Throughput (req/min) The rate of completed requests.
Reliability (%) The percentage of requests that being 

completed less than a threshold. (30 ms)
Availability (%) The percentage of time that no requests are 

timeout. (60 ms)

CP  input
CPU (%) Observed CPU percentage of a VM.

Memory (MB) Observed Memory of a VM.
Thread Observed maximum concurrent threads of a 

service-instance. (a modified control knob of 
Tomcat's maxThread property)

EP  input Workload (req/min) Observed  request rate of a service-instance.

requests, we believe that such compression is realistic and large 
enough to simulate QoS interference  in  a  public  cloud.  The 
sampling and modeling intervals  are both 120 secs with the 
total of 500 intervals where the first 150 intervals use a static 
and stable workload trend aiming at providing some essential 
data for the modeling; whereas the rear 350 intervals follow the 
FIFA98 trend.  This  setup  can  generate  one new sample  per 
interval for updating the model. 

A. The QoS Attributes, Primitives and Evaluation Procedure

The  concrete  QoS  attributes  and  primitives  depend  on 
scenarios.  For the simplicity of exposition, we have selected 
commonly used QoS attributes and primitives in the evaluation, 
but it is worth noting that our approach is not limited to these 
dimensions.  As  listed  in  Table  I,  these  QoS  attributes  and 
primitives are per-service except for CPU and memory as they 
are shared on a VM. For each service-instance, a QoS model 
can at most has 4 direct primitives (i.e., CPU, memory, thread 
and  workload  of  the  said  service-instance);  54  indirect  
primitives: i.e. 2 (thread and workload)×25 (co-located service-
instances)+4  (CPU  and  memory  of  another  two  co-hosted 
VMs).  This  combination  has  a  size  of  58  possible  relevant 
primitives for each service-instance. 

We evaluate the prediction accuracy on the fly; and for each 
experiment run, we examine the accuracy of one interval ahead 
prediction: by the end of interval t, the QoS models are trained 
based on historical data up to t-1, and then the predicted QoS 
value at t is compared with the actual value using SMAPE. 

B. Accuracy Results for Hybrid Multi-Learners

To assess our hybrid multi-learners  (denoted as HYBRID) for 
primitives selection, we compare  its  effect  on accuracy with 
three other selection techniques,  these are: single learner with 
mR  (denoted  as  SINGLE-MR),  single  learner  with  mRMR 
(denoted as SINGLE-MRMR) and the FIXED technique that statically 
uses certain primitives (CPU and memory in our case) as inputs 
[e.g., 10] - we modified the model from per-VM to per-service. 
For all cases, we apply three widely used learning algorithms 
(i.e., ANN, ARMAX and RT) for QoS function training under 
all QoS attributes. By leveraging on the procedure in Section 
V-A, for each selection technique, we use the SMAPE for the 
rear  350  out  of  500  intervals  in  one  experiment  run;  we 
calculate the mean accuracy of all service-instances on one VM 
of the master  PM and the reported results  are computed  by 
averaging 10 runs. 
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Fig. 3.  Accuracy of different primitives selection techniques under various QoS attributes and learning algorithms.

TABLE II.  THE NUMBER OF INPUTS AND MEAN PREDICTION ERRORS

hybrid multi-
learners

single-mR single-
mRMR

fixed

Mean SMAPE (%) 10.7 12.4 15 14.2
Number of inputs 5 to 8 30 to 44 2 to 3 2

The first row in Table II summaries the mean prediction 
error of each technique for all four QoS attributes and three 
learning algorithms, which we have examined; the second row 
shows the model complexity produced by each technique. We 
can see that the model produced by HYBRID (5-8 inputs) achieves 
dramatic reduction on model complexity in contrast to that of 
SINGLE-MR  (30-44 inputs). In addition, the HYBRID performs better 
in terms of accuracy (10.7% to 12.4%). On the other hand, the 
HYBRID seems to be more complex in terms of model inputs than 
the  SINGLE-MRMR and  FIXED.  Nevertheless, their accuracies are 
significantly  worse  than  that  of  HYBRID (15%  and  14.2%  to 
10.7%);  because  two  inputs  are  too  simple  to  handle  the 
correlation when QoS fluctuates.

To better comment on the accuracy of our technique, Figure 
3(a) shows the result for response time. We can clearly see  that 
for all three learning algorithms, applying HYBRID in primitives 
selection produces the best accuracy when compared with all 
the single learners.  In particular,  the reduction on prediction 
error ranges from 2.39% (13.51% to 15.9% against  SINGLE-MR 
on  ANN)  to  17.22%  (13.51%  to  30.73%  against  FIXED on 
ANN). Similar result can be observed in  Figure 3(b),  which 
shows the accuracy for throughput. The HYBRID is superior to the 
others  for  all  algorithms  with  improvement  ranging  from 
2.02% (15.02% to 17.04% against  SINGLE-MR on ARMAX) to 
16.43% (13.75% to 30.18% against  SINGLE-MRMR on ANN). It 
is  worth  noting  that  although  in  most  cases  HYBRID only 
improves on the accuracy of  SINGLE-MR by around 2%, it  can 
achieve such improvement with the benefits of using only 5 to 
8 inputs as when compared with 30 to 44 inputs for SINGLE-MR. 
The accuracy for reliability and availability  are illustrated in 
Figure 3(c) and 3(d). The HYBRID is again better than the others 
on ANN and ARMAX for reliability; it is also the best one on 
ANN for availability. Interestingly, it can be noticed that there 
are cases where HYBRID does not result in the best accuracy, i.e., 
on RT for reliability; on AMRAX and RT for availability. This 
is because the trends for reliability and availability are much 

more  stable  than  that  for  response  time  and  throughput. 
Therefore, the sensitivity of certain learning algorithms to the 
number  of  inputs  are  amplified;  and  this  leads  to  over-fits. 
However, the differences of accuracy between  HYBRID and the 
best  single  learner  ranges  from  0.01%  to  0.04%,  which  is 
marginal  as  when compared  to  the  improvement  that  HYBRID 
offers.  In summary, our hybrid technique is able to result in 
adequate  model  complexity  and  reduce  the  prediction error, 
especially when QoS fluctuates.

C. Accuracy Results for Adaptive Multi-Learners

To evaluate our adaptive multi-learners technique (denoted 
as ADAPTIVE) for QoS function training, we follow the evaluation 
procedure described in Section V-A. In particular, we compare 
the accuracy of  ADAPTIVE with that of the single learner-based 
learning  algorithms  (i.e.,  ANN,  ARMAX  and  RT)  under 
different  QoS  attributes.  For  each  learning  algorithm,  we 
examine the SMAPE for the rear 350 out of 500 intervals in 
each experiment run; in addition, we use the mean accuracy of 
all  service-instances  on  one  VM of  the  master  PM and the 
reported results  are the average of  10 runs.  In all  cases,  we 
apply hybrid multi-learners technique for primitives selection. 

In Figure 4, (a) shows the comparison result for response 
time: we can see that ANN is the best learning algorithm in 
contrast to ARMAX and RT; and the ADAPTIVE is able to achieve 
similar  accuracy (13.82% error) to ANN (13.51% error).  (b) 
illustrates  the  result  for  throughput,  where  the  ANN  again 
performs better than the other two. The figure clearly shows 
that  ADAPTIVE (14.16% error) is only slightly worse than ANN 
(13.75% error). These results indicate that although the ADAPTIVE 
might occasionally produce false positive/negative for selecting 
the  best  learning  algorithm,  it  is  still  able  to  produce  very 
closed  accuracy  to  the  best  learning  algorithm  for  a  QoS 
attribute. In cases of reliability (c) and availability (d), we can 
see that in both QoS attributes, the ADAPTIVE is able to produce 
the  same  prediction  error  (0.03%  and  0.05%)  as  the  best 
learning algorithm, which is ARMAX. This result means that 
the ADAPTIVE successfully determines the best learning algorithm 
along the QoS trend. In summary, we can note that although the 
algorithms behave differently depends on different QoS trends, 
our adaptive technique can still continuously  select  the  suited
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Fig. 4.  Accuracy of different learning algorithms for various QoS attributes.
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Fig. 5.  The actual and predicted QoS values for an instance of the service namely SEARCHITEMBYCATEGORY in one run.

one to predict QoS and result in good accuracy; it is also less 
sensitive  to  different  QoS  trends.  Moreover,  our  solution 
eliminates the need of heavy human intervention and the errors 
that can be introduced by human analysis. 

D.  Detailed Accuracy

Figure  5 illustrates examples  of  the actual  and predicted 
QoS  values  for  all  the  considered  QoS  attributes.  Due  to 
limited space, we have used an instance of the service named 
SEARCHITEMBYCATEGORY as  the  example.  We  can  see  that  the 
prediction of the hybrid and adaptive multi-learners approach 
diverts from the actual QoS scale at some early peak points, 
e.g.,  the  30th interval  for  throughput.  We  believe  that  such 
inaccuracy  is  due  to  the  applied  FIFA98  trend  has  limited 
seasonality,  thus  the  modeling  approach  can  frequently 
encounter  'new  behaviors'  of  the  services  at  peak  points, 
especially during the early stages of fluctuated trend. However, 
the figure clearly shows that the multi-learners approach is able 
to quickly evolve itself and detect most of the change-points in 
the remaining trend, given that the subsequent predictions are 
good even for the peak and trough.

E. Modeling Overhead

To assess the overhead of our approach, we compare the 
execution time of  HYBRID to that of  SINGLE-MR and  SINGLE-MRMR 
for primitives selection; we also examine the execution time of 
ADAPTIVE to that  of ANN, ARMAX and RT for QoS function 
training.  We  have  used  an  instance  of  the  service  named 
SEARCHITEMBYCATEGORY as the example and the experiments are 
performed using the rear 10 out of 500 intervals. We report on 
the average results of all QoS attributes over 10 runs. 

Figure  6  (left)  shows  the  performance  overhead  for 
different primitives selection techniques. We can see that the 
HYBRID (0.65s) has relatively bigger overhead as when compared 

to  SINGLE-MR (0.02s);  and  smaller  to  that  of  SINGLE-MRMR 
(0.84s). We have observed that this is due to the majority of 
overhead  is  caused  by  the  optimization  process  of  Eq  5. 
However, such extra overhead of HYBRID is generally acceptable 
as  it  is  still  less  than  1  sec.  For  the  case  of  QoS  function 
training, Figure 6 (right) illustrates the best and worst cases for 
all learning algorithms. In particular, ANN generally produces 
bigger overhead as  when  compared to ARMAX and RT.  This 
is because the ANN is fundamentally more complex than the 
other two. For both the best and worst cases, the  ADAPTIVE has 
relatively  similar  overhead  (10s  to  35.05s)  to  that  of  ANN 
(5.07s to 30.09s); this is expected as the ADAPTIVE needs to wait 
for  the  completion  of  all  simultaneously  running  learning 
algorithms before determine the best one to use. 

As a result, the overhead of our hybrid and adaptive multi-
learners  technique  is  acceptable  under  the  sampling  and 
modeling interval of 120s, and thus it is efficient enough to be 
performed online.

VI. RELATED WORK

The  increasing  complexity  of  managing  services  in  the 
cloud makes the analytical difficulty far beyond the capability 
of human analysis. As a result, traditional analytical QoS model 
(e.g., [9]) tends to be limited in such context. To cope with this 
limitation, recent works have focused on single learner based 
and  semi-dynamic approaches  (e.g.,  ANN[10],  ARMAX[11], 
RT [14] and linear regression[12]). Hybrid solutions are also 
exist: [13] adapt  kalman-filter with linear regression to model 
QoS  and  they  cluster  the  resulted  models.  However,  these 
approaches have not considered QoS interference and  dynamic 
selection  of  useful  primitives.  In  addition,  they  do  not  take 
software control  primitives into account thus they cannot be 
used in the context of PaaS.
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Fig. 6.   Modeling overhead in terms of execution time for primitives selection 
(left) and QoS function training (right) on SEARCHITEMBYCATEGORY.

Despite QoS interference being core to the problem of QoS 
modeling  in  the  cloud,  there  has  been  very  little  attempts: 
online  [24]  and  offline  [15]  work  exist  for  modeling  QoS 
interference caused by the co-hosted VMs. Unlike our work, 
[15] do not consider software control primitives and they rely 
on fixed selection of primitives. [24] is the closest work to this 
paper  as  they  consider  software  control  primitives  and  use 
Simplex Reduction to do dynamic primitives selection, the QoS 
function  training  is  handled  by  reinforcement  learning.  In 
contrast, our approach works on a finer model granularity of 
service instances rather than VMs. By doing so, we can also 
cope with the interferences caused by co-located services on a 
VM. In addition, we use hybrid and adaptive multi-learners to 
select the model inputs and train QoS function on the fly, which 
has been shown to be effective and time efficient. 

Recent approaches [9,10,11,12,14] are single learner-based, 
which  are  realized  through  adapting  a  single  technique  for 
modeling how primitives correlate with QoS. These approaches 
require  extensive  human  analysis  and  investigation.  [16] 
alternatively  propose  a  method  to  predict  the  utilization  of 
hardware control primitive using an ensemble solution where 
the results from different learning algorithms are combined in a 
weighted-sum relation.  As a  result,  their  approach  is  highly 
sensitive to the similarity of candidate learners. Our work on 
the  other  hand,  dynamically  select  the  best  algorithm  for 
predicting the correlation between QoS and its primitives.

VII. CONCLUSION AND FUTURE WORK

We  have  proposed  a  novel  hybrid  and  adaptive  multi-
learners  approach  for  online  QoS modeling in  the cloud.  In 
particular,  we  have  applied  a  hybrid  approach  to  determine 
which and  when primitives  correlate  with  QoS.  We  have 
described  an  adaptive  solution  to  model  how primitives 
correlate  with QoS, and dynamically select the best learning 
algorithm for  prediction.  Experimentally,  we  have  evaluated 
our  approach  with  respect  to  accuracy  and  overhead  using 
RUBiS and  the  FIFA workload.  The  results  reveal  that  the 
proposed approach produces better and more stable accuracy 
than  the  other  state-of-the-art  models  with  adequate 
complexity. In addition, it results in acceptable overhead and is 
able to eliminate the possible errors introduced by the human 
for selecting modeling inputs and learning algorithms. In future 
work,  we  will  report  on  use  of  the  modeling  approach  for 
elastic autoscaling in the cloud. 
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