
 Online QoS Modeling in the Cloud: A Hybrid and
Adaptive Multi-Learners Approach

Tao Chen, Rami Bahsoon, Xin Yao
School of Computer Science

University of Birmingham, Birmingham, UK, B15 2TT
Email: {txc919, r.bahsoon, x.yao}@cs.bham.ac.uk

Abstract—Given the on-demand nature of cloud computing,
managing cloud-based services requires accurate modeling for
the correlation between their Quality of Service (QoS) and cloud
configurations/resources. The resulted models need to cope with
the dynamic fluctuation of QoS sensitivity and interference.
However, existing QoS modeling in the cloud are limited in terms
of both accuracy and applicability due to their static and semi-
dynamic nature. In this paper, we present a fully dynamic multi-
learners approach for automated and online QoS modeling in the
cloud. We contribute to a hybrid learners solution, which
improves accuracy while keeping model complexity adequate. To
determine the inputs of QoS model at runtime, we partition the
inputs space into two sub-spaces, each of which applies different
symmetric uncertainty based selection techniques, and we then
combine the sub-spaces results. The learners are also adaptive;
they simultaneously allow several machine learning algorithms to
model QoS function and dynamically select the best model for
prediction on the fly. We experimentally evaluate our models
using RUBiS benchmark and realistic FIFA 98 workload. The
results show that our multi-learners approach is more accurate
and effective in contrast to the other state-of-the-art approaches.

Index Terms—QoS modeling, sensitivity, QoS interference,
prediction, machine learning, multi-learners, cloud computing.

I. INTRODUCTION

Cloud-based services provided as Software-as-a-Service
(SaaS) are typically running on top of the software stack within
the Platform-as-a-Service (PaaS) layer [3]. They are also
supported by the Virtual Machines (VM) and hardware within
the Infrastructure-as-a-Service (IaaS) layer [4]. To offer
elasticity under changing external environment conditions (e.g.,
workload, size of incoming job etc.), cloud service providers
often dynamically scale various internal control knobs, which
provide on-demand configuration of software (e.g., threads of
service/application) and hardware resources (e.g., CPU and
memory of VM) in a shared infrastructure. In this work, we
refer to both control knobs and environment conditions in the
cloud as primitives. The key problem, which cloud/service
providers face is how to manage runtime Quality of Service
(QoS) by autoscaling to the best set of control values. By QoS,
we refer to the non-functional attributes (e.g., throughput)
experienced by the end-users of the cloud-based services. In
particular, the fundamental challenge is how to link QoS with
the primitives in cloud, which we address in this paper.

QoS models allow the use of primitive values as inputs and
predict the likely QoS value as an output. These models can
better express QoS sensitivity; by sensitivity, we are interested

in which (e.g., are throughput and CPU correlated?), when
(i.e., at which point in time they are correlated?) and how (i.e.,
the magnitude of primitives in correlation) the primitives
correlate with QoS. An accurate QoS model in the cloud can
serve as a powerful tool to reason and compare the
consequences of different elastic autoscaling strategies.
However, the difficulty is that the QoS sensitivity tends to
fluctuate at runtime. In addition, QoS modeling in the cloud
suffers from the problem of QoS interference, which we refer
to scenarios where a service exhibits wide disparity in its QoS
performance due to the fluctuation in primitives of co-located
services on the VM and co-hosted VMs on the Physical
Machine (PM) [24,15]. This is a typical consequence of
resources contention. The QoS interference is uncertain in
nature; because it is difficult to know when contention would
occur and what the degree of such contention is. These
runtime uncertainties urge the need for a fully dynamic and
online modeling approach that continuously evolves itself.

The majority of the work on QoS modeling in cloud has
been either static (e.g., queuing network [9]) or semi-dynamic
[10-15]. The effectiveness of static approaches is restricted by
their simplified assumptions on service's internal operations
[10], which limits them for online QoS modeling in cloud. In
addition, they do not take QoS interference into account. On
the other hand, semi-dynamic approaches are either online
[10-14] or offline [15]. The main difference between them is
that the offline models tend to be limited in the way they cope
with the unexpected changes at runtime [10]. They are called
'semi-dynamic' because both online and offline approaches
focus on dynamically model the magnitude of primitives in
correlation to QoS; while the selection of primitives to
determine the features of models has been fixed and offline
(e.g., only consider CPU and memory as inputs).

Existing semi-dynamic approaches tend to be limited
because: (i) they do not consider software configuration (e.g.,
thread), which can interplay with the hardware provisions to
influence QoS [20,24]; (ii) It is well-known that primitives
selection can improve model accuracy [22], however, given
the increasing variability of software configuration and
application/service type in the cloud, the fixed selection
requires heavy human intervention [10] and can result in
considerable complexity and difficulty in its application. This
is especially true when the primitives can influence the QoS in
a dynamic and joint fashion: e.g., the service and its QoS tend
to be sensitive to CPU only if the service thread and/or the

CPU of co-hosted VM are set to a high value; (iii) The cloud
suffers uncertain workload, VM deployment and QoS
interference. Henceforth, the fixed selection of primitives can
become invalid at runtime and mislead the modeling.

In previous work [8], we have proposed a fully dynamic,
fine-grained and online QoS modeling approach for handling
QoS sensitivity and interference. The approach combines
symmetric uncertainty [21], an efficient measurement of data
relevance for feature selection [8,22], with two alternative
machine learning algorithms, which are Auto-Regressive
Moving Average with eXogenous inputs [18] (ARMAX) and
Artificial Neural Network [17] (ANN) to reach two
formulations of the model. This solution and other existing
modeling approaches [10-15] are called single learner-based as
they apply single primitives selection technique and learning
algorithm to model QoS. We have shown in [8] that the
previously proposed approach is able to achieve better accuracy
in contrast to existing semi-dynamic approaches. However, our
subsequent investigations have revealed several limitations of
such approach. Firstly, it ignores the QoS interference caused
by VMs co-hosted on the same PM [24,15]. Secondly, the
single learner approach can easily result in a QoS model with
large numbers of inputs due to its over-sensitive handling in
QoS interference. This will unnecessarily complicate the model
and downgrade the prediction accuracy. Thirdly, we have
observed that different learning algorithms (e.g., ANN and
ARMAX) can be suitable only for certain QoS trends;
however, a single learner approach requires the engineers to
predetermine the suitable learning algorithm. This can entail
manual and extensive investigation rendering it as an expensive
process. Moreover, a predetermined approach does not cater for
unexpected or envisioned changes in QoS at runtime.

In this paper, we propose an online QoS modeling approach
to overcome the above limitations using hybrid and adaptive
multi-learners. In particular, our novel contributions include:

Firstly, our previous work modeled QoS interferences of
services co-located on a VM. This work, however, additionally
factors interferences caused by VMs co-hosted on a PM.

Secondly, for primitives selection, we propose a hybrid
multi-learners approach to determine which and when
primitives correlates with the QoS on the fly. The idea is that
we aim to select the relevant and useful primitives which can
improve accuracy in the modeling. To this end, we partition the
primitives space into two sub-spaces; the learner in each sub-
space uses different primitives selection techniques based on
symmetric uncertainty [21] and the results of the two learners
are combined. Increasing the number of space partitions can
introduce computational overhead, thus we used two partitions
and we found out that it produces adequate accuracy.

Thirdly, we develop an adaptive multi-learner solution to
dynamically model how the primitives correlates with the QoS.
Precisely, multiple learners that apply different learning
algorithms are used to build a bucket of models. By doing so,
we aim to dynamically select the best learning algorithm and its
resulted model during prediction in cloud. Particularly, we have
examined three widely used learning algorithms as exemplars,
these are: ANN, ARMAX and Regression Tree (RT) [19].

Fourthly, we implement our modeling approach based on
an autonomic architecture in the cloud. We experimentally
evaluate the approach under four commonly used QoS
attributes, these are: response time, throughput, availability and
reliability. In addition, we have used the well-known RUBiS [6]
benchmark and the FIFA 98 [7] workload. The results reveal
that our approach is effective and has acceptable overhead.

In the following, Section II decomposes the problem of
QoS modeling and presents the model. Section III describes
our architecture and overview of the approach. Section IV
specifies the hybrid and adaptive multi-learners. Section V
reports on experiments and evaluation. Section VI and VII
present related work and conclusion respectively.

II. MODELS AND PROBLEM ANALYSIS

A. Cloud System Model

We assume that cloud-based applications are composed of
services, each has different QoS requirements and external
environment changes (e.g., changes in workload). These
applications and services are deployed on a cloud software
stack, which can be setup using various control knobs. In
addition, they are hosted on the cloud infrastructure where
resources are shared via VMs. Often, multi-tiers applications
and services in the cloud can have multiple replicas for load
balancing purpose. Therefore we assume that each tier in a
multi-tiers application, consisting of concrete services {S1, S2,
… Si}, can have multiple replicas deployed on different VMs
even PMs; the replicas of a tier can also consist of the replicas
of services that was originally contained by this tier. In this
work, we refer to the replicas of concrete services as service-
instances: the jth service-instance of the ith concrete service is
denoted by Sij. Unlike existing work [13], which focus on
modeling for the entire application and VM, we aim to create
fine-grained QoS models for each service-instance. In
particular, the resulted models should cope with the QoS
interferences at both inter-VMs and inter-services level. In
addition, instead of modeling the effect of VM-level
provisioning (i.e. add/remove a VM), we focus on the effect of
fine-grained provisioning inside VM (e.g., CPU of a VM
and/or maxThread of a service-instance). This would provide
more flexible use of the model (e.g., vertical scaling) and has
been becoming a trend in cloud. It is important to consider
vertical scaling before horizontal scaling (e.g., add, remove or
migrate VMs) as the former is often much more efficient than
the later.

It is worth noting that, apart from the co-hosted services
and co-located VMs, QoS interference can also occur due to
contention on the functionally dependent services. For instance,
S11 and S31 (both running on different PMs) can be both
dependent on S21 (e.g., a database service). This implies that S11

and S31 incur QoS interference. However, we discovered that in
such case, the primitives of S31 tend to be insignificant in the
QoS modeling of S11 as the same information has already been
expressed by the primitives of S21, which is also part of the
invocation. As a result, we consider the co-hosted services and
co-located VMs as the primary causes of QoS interference.

Fig. 1. The primitives decomposition (left) and partitioning (right)

B. Cloud Primitives Decomposition and Partitioning

To achieve better generality, we decompose the notion of
primitives into two major domains: these are Control Primitive
(CP) and Environmental Primitive (EP). Control Primitives
are the internal control knobs and can be either software or
hardware, which can be managed by the cloud providers to
support QoS. Specifically, software control primitives are
software tactics and configurations; such as the number of
threads in thread pool of service/application, the number of
database connections and load balancing policies etc. Whereas,
hardware control primitives are computational resources, such
as CPU and memory. As shown in Figure 1 (left), software and
hardware control primitives rely on the PaaS and IaaS layers
respectively. In particular, it is non-trivial to consider software
control primitives when modeling QoS in the cloud as they
have been shown to be important features for QoS [20,24]. On
the other hand, Environmental Primitives refer to the external
stimulus that cause dynamics and uncertainty in the cloud; for
examples, workload and unpredictable incoming data etc. If the
cloud provider is able to control the presence of the stimulus,
then these can be then considered as control primitives.

To prevent noises and improve accuracy, selecting the right
primitives as inputs is critical for QoS modeling in the cloud.
However, the difficulty is that the primitive inputs, which are
relevant and useful for modeling QoS in the cloud tend to be
dynamic [24]. All possible primitives inputs for modeling the
QoS attributes of a service-instance form a space, which we
call possible relevant primitives space; the problem is to select
on the fly a relevant and useful subset of primitives from the
space for modeling QoS. This space can be defined by:
Rule 1: A primitive belongs to the possible relevant primitives
space for modeling the QoS of Sab if:

1) it is a software control or environmental primitive of Sab, or
2) it is a hardware control primitive of the VM that runs Sab, or
3) in case of Sab has direct functional dependency on Scd, it is a

software control or environmental primitive of Scd, or
4) in case of Sab has direct functional dependency on Scd, it is a

hardware control primitive of the VM that runs Scd, or
5) it is a software control or environmental primitive of S cd,

which is co-located with Sab on the same VM, or
6) it is a hardware control primitive of the VM, which is co-

hosted with the VM that runs Sab on the same PM.

We tackle the problem of selecting useful primitives using
symmetric uncertainty [21], which measures the degree of
relevance between two time series variables by producing a
value ranges from 0 to 1 - a greater value implies higher
relevance. At one extreme, the value between a QoS attribute
and a primitive is 1 indicating that all information of the

primitive is correlated with the QoS (and vice versa). At the
other extreme, the value of 0 implies that changes in the
primitive’s behavior are independent of that of the QoS.
Formally, symmetric uncertainty is calculated by:

 U(X,Y)= 2×∑ y∈Y ∑ x∈ X p(x , y)log (p(x , y)
p (x)× p(y))

∑ x∈ X p(x)log(p(x))+∑ y ∈Y p(y)log (p(y))
 (1)

where X and Y are two series of values over time (e.g, a QoS
attribute and a primitive); x and y are one of these values.
p(x,y) is the joint probability between two values and p(x) is
the marginal probability of a value. Analysis of the data of
symmetric uncertainty values in [8] showed that for each
feature dimension, certain primitives tend to be more relevant
to the QoS than others, e.g., the CPU of the underlying VM
usually has greater values than the CPU of co-hosted VMs; this
fact motivates us to partition the possible relevant primitives
space based on the relevance between primitives and QoS. By
clustering on the symmetric uncertainty values of primitives;
we found that using two sub-spaces can improve accuracy and
reduce model complexity without having large overhead, as
shown in Section V. These two sub-spaces are named: direct
primitives space and indirect primitives space; the former is
usually more relevant to the QoS than the later. Our aim is to
select and update the subsets of primitives from these two sub-
spaces on the fly, as we will see in Section IV-B. We
discovered that the direct primitives space can be defined by:
Rule 2: A primitive belongs to the direct primitives space for
modeling the QoS of Sab if it meets conditions 1, 2, 3 or 4 in Rule 1.

On the other hand, the indirect primitives space, which mainly
contains the information related to interference, is defined by:
Rule 3: A primitive belongs to the indirect primitives space for
modeling the QoS of Sab if it meets conditions 5 or 6 in Rule 1.

An example of the partitions is shown in Figure 1 (right). Also,
start and stop VMs can trigger re-partition based on Rule 1-3.

C. QoS Model for Interference

The generic online model for the kth QoS attribute of Sij at
a given sampling interval t is formally expressed as:

QoS k
ij(t)= f (SP k

ij(t) ,δ) (2)

where QoS k
ij (t) is the discrete or mean value (e.g., average

response time) of the kth QoS attribute of Sij from t-1 to t. f is
the QoS function, which changes at runtime, as we will see in
Section IV-D. δ refers to any other inputs (e.g., historical time-
series QoS points and tuning variables etc) required by the
algorithm to train f apart from the primitives. To handle QoS
interferences, we denote input SP k

ij(t) in Eq. 2 as the selected
primitives matrix of QoS k

ij(t) at t, formally depicted in Eq. 3.

SP k
ij(t)=[CPa

xy (t) ... EPb
mn(t−1) ...

...
CPa

xy (t−q+1) ... EPb
mn(t −q) ...] (3)

This matrix contains the primitive inputs of QoS k
ij(t)

selected from the possible relevant primitives space for QoSs
of Sij, as we will see in Section IV-B. More concretely, the
column entries indicate which and when primitives correlate
with the QoS. q determines the number of row entries, which

Environmental Primitives

Software Control Primitives

Hardware Control Primitives

Service instance 1 Service instance 2

Tomcat DBMS

VM VM

Adjust

Adjust

SaaS

PaaS

IaaS

Influence
Possible Relevant Primitives Space

of a Service-Instance

Selected Primitives

Unselected Primitives

Direct
Primitives Direct

Primitives

Indirect
Primitives Indirect

Primitives

indicates the use of how many historical time-series points of
the selected primitives as inputs can impact the learning
algorithm that trains f. We observed that it is better to set q as
constant for certain algorithms (e.g., q=1 for ANN and RT);
however for the others (e.g., ARMAX), we found that q should
be determined during training via hill-climbing optimization,
which starts with q=1, then automatically increase the number
of row entires one by one during training till the accuracy
cannot be further improved [8]. CPa

xy (t) and EPb
mn(t−1)

denote the ath control primitive of Sxy and the bth
environmental primitive of Smn respectively. The actual values
of CPa

xy (t) and EPb
mn(t−1) that used in the modeling are the

mean of measured data from t-1 to t and from t-2 to t-1
respectively. To dynamically train the QoS function f, we
investigate three most widely-used learning algorithms form
the literature, these are ARMAX, ANN and RT. In the
following, we briefly explain these learning algorithms:

Auto-Regressive Moving Average with eXogenous inputs -
ARMAX [18] models the correlation between QoS and
primitives as a linear relation and it captures the time-series
information into the model. In this work, we train the ARMAX
using linear Least Mean Square (LMS) approach [27]; and the
q is determined using hill-climbing algorithm that starts with
q=1, then automatically increase the number of row entires one
by one during training till it reaches good accuracy [8].

Artificial Neural Network - ANN [17] is a powerful
supervised learning algorithm, which is capable for modeling
complex nonlinear correlations. This is achieved by weighting
the inputs and transforming them using activation function to
produce the output. In this work, we use three layers and
Sigmoid function in the network as this setup tends to relief the
issue of local minima. ANN is trained using a well-known
technique, namely the Resilient backPROPagation (RPROP)
[25]. We found that use q=1 (i.e., no time series information)
can produce the best result; and the right number of hidden
neurons is determined using hill-climbing algorithm during
training till the accuracy cannot be further improved [8].

Regression Tree - RT [19] is a learning algorithm that maps
the relation of primitives and QoS into a tree-like structure, in
which leaves represent class labels and branches express
conjunctions of features to reach these labels. The tree is
trained using the Classification and Regression Trees (CART)
technique [26] and we found that use q=1 (i.e., no time series
information) can produce the optimal results.

To adaptively model a given QoS k
ij (t) online, our QoS

modeling approach consists of two phases: (i) a primitives
selection phase that determines the content of SP k

ij(t) at
runtime using hybrid multi-learners; and (ii) a QoS function
training phase that trains function f on the fly via adaptive
multi-learners. Finally, the adaptive multi-learners select the
best model to predict QoS.

III. OVERVIEW OF THE ONLINE QOS MODELING APPROACH IN CLOUD

As shown in Figure 2, the approach is realized as
middleware using autonomic architecture with a feedback loop.
The service-instances running on the VMs of a PM are
managed by a dedicated Middleware Instance (MI), which is

Fig. 2. Overview of the modeling approach in cloud

attached to the root domain (e.g., Dom0 [5]) of this PM. The
feedback loop runs continuously to keep the models updated.

Our approach is designed for online scenarios; the only
offline preparation is to define the current service-instances,
their QoS and primitives spaces (i.e., using Rule 1-3). This data
should be updated accordingly if changes occur. However, the
approach can be also used offline in situations where
conducting offline modeling in advance can further improve
the online models. Within the feedback loop, Data Collector
continuously monitors and stores sample-values of QoS and
primitives from the service-instances/VMs of a PM, and those
from the other PMs in the presence of functional dependency.
This can be achieved by accessing the cloud sensors or log
files. For each QoS attribute of a service-instance, all historical
data is then passed to the primitives selection phase for
determining which and when primitives correlate with QoS at
runtime (step 1). Here, we have used two learners to select
primitives from the direct and indirect primitives spaces (see
Section IV-B). At step 2, the selected sets of primitives are
combined and sent to the QoS function training phase, where
multiple learners are used to model how the primitives correlate
with QoS online (step 3). At step 4, each QoS attribute is
associated with a bucket of models produced by candidate
learners and an evaluation function; in addition, the weights in
the evaluation function will be updated. This bucket can be
then used by, e.g., an Autoscaler at any time (step 5). Upon
prediction when given a set of inputs, the evaluation function is
used to select the best model in the bucket (see Section IV-D).

IV. MOTIVATION AND DESIGN OF THE MULTI-LEARNERS

A. Limitation of Single Learner in Primitives Selection

As shown in Eq. 2 and Eq. 3, to dynamically model
QoS k

ij(t) at runtime, we first determine which and when the
underlying primitives should be included as column entries in
SP k

ij(t) for the QoS modeling. In our previous work [8], we
have approached the primitives selection problem using a
single learner with maximal Relevance (mR) technique based
on symmetric uncertainty [21]. More precisely, we have used
this technique to select primitives from the entire possible
relevant primitives space for the QoSs of a given service-
instance. A primitive is said to be correlated with a QoS
attribute if their symmetric uncertainty value is greater than 0.
We have shown that this technique produces better accuracy in
contrast to the semi-dynamic models [8]. However, we have

......

...

Sensed DataSensed
Data

Sensed Data
Dom0

VM VM

mRMR Learner

mR Learner

RT Learner

ARMAX Learner

ANN Learner

Model

Model

Model

MI at Dom0

MI MI

Data Collector

Possible rele-
vant primitives

space

Evaluation
function

Bucket of models

Primitives Selection QoS Function Training

Service instances Primitives spacesQoS attributes

Initial Configurations
5. used for prediction
when needed

1 2 3 4

.

.

.

.

.

.

The Cloud

Offline

Online

observed that a single learner based mR technique constantly
results in a large number of selected primitives in the QoS
model. This will result in an overcomplicated model, which can
cause the following problems: firstly, it renders the decision for
selecting the right elastic strategy difficult when using the
model. Secondly, certain learning algorithms can easily over-fit
the model and thus affect its accuracy.

To cope with this issue, we examined the data produced by
the mR approach from [8] while keeping the total number of
considered services and primitives unchanged. We have found
that reducing the indirect primitives space in the modeling can
improve accuracy. On the other hand, reducing the direct
primitives space in the modeling can downgrade the accuracy
as important information tends to be eliminated. This is
because the direct primitives are able to affect QoS by directly
controlling the utilization in different dimensions, which means
they can provide different aspects of information; whereas all
the indirect ones can only do so via contention, thus they can
only provide information about contention and this means that
the information redundancy becomes a problem. In other
words, a newly selected primitive can indeed be relevant to the
QoS but the same information has already been provided by
another selected primitive, which has higher relevance. This
fact implies that the magnitude of the new primitive is
insignificant to the QoS and can downgrade the accuracy [22].
Therefore, the high redundancy can be due to over-sensitive
modeling for QoS interference in the indirect primitives space.

B. Hybrid Multi-Learners for Primitives Selection

To tackle the above issues, we design a hybrid multi-
learners solution for handling the QoS interference. Precisely,
instead of using all relevant primitives as inputs, we select the
ones that not only relevant but also useful in the modeling. By
doing so, we aim to improve accuracy and maintain adequate
model complexity. The hybrid solution employes different
selection techniques and produces an ensemble result online.
Unlike the single learner based techniques that select primitives
in the entire primitives space, we independently focus on the
partitioned direct and indirect primitives space. As shown in
Figure 2, for each QoS attribute of a given service-instance, we
use a mR-based learner and a maximal Relevance Minimal
Redundancy (mRMR) based learner to dynamically select
useful primitives in the direct and indirect primitives space
respectively. The use of mRMR is inspired by the work of [22],
which applies this technique for feature selection in
classification algorithms. Specifically, the objective of mR-
based learner in the direct primitives space is to continuously
select the number of primitives that maximizes Eq. 4:

max Ψ(X , y) , Ψ=∑x∈X
n U (x , y) , s.t.U (x , y)>0 (4)

where x and y are series of values of a primitive and a QoS
attribute respectively. X denotes the direct primitives space and
n is the number of primitives, which has been already selected.
U is the function of symmetric uncertainty (Eq. 1). Since the
value of U cannot be negative, Eq. 4 can be solved by selecting
any primitives that results in non-zero value with the QoS.

On the other hand, we use a similar approach for the
indirect primitives but with additional consideration of

information redundancy. Formally, the objective of mRMR-
based learner in the indirect primitives space is to continuously
select the number of primitives that maximizes Eq. 5:

maxΦ(X , y) ,Φ =
∑x ∈ X

n U (x , y)
1+∑x , x '∈ X U (x , x ')

, s.t.U (x , y)>0 (5)

where x' is also a series of concrete values of a primitive. X
denotes the indirect primitives space; and the remaining
notations are the same as in Eq. 4. In this work, we apply
incremental random search to optimize Eq. 5 for simplicity;
however, it can be easily replaced by more sophisticated
algorithms. Finally, the selected sets from both learners are
combined.
Algorithm 1 Hybrid multi-learners for primitives selection

Inputs: given a QoS attribute QoS k
ij , the associated direct

primitives space Dij and indirect primitives space IDij .
Declare: C direct - the collection of selected direct primitives.
 C indirect - the collection of selected indirect primitives.
Outputs: the column entries of the selected primitives matrix
SP k

ij(t)
1. start interval t
2. C direct :=∅ ,C indirect :=∅
3. C direct :=optmize Ψ(D ij , QoSk

ij) via Equation 4

4. C indirect :=optmize Φ(IDij ,QoS k
ij) via Equation 5

5. column entiresof SP k
ij(t) :=Cdirect∪C indirect

6. end interval t

An algorithmic description of the primitives selection phase
has been illustrated in Algorithm 1. We will show (in Section
V-B) that the proposed hybrid multi-learners technique leads to
better accuracy as when compared to other single learner based
and fixed solutions.

C. Limitations of Single Learner in QoS Function Training

Recall from Eq. 2, once the primitives in SP k
ij(t) are

selected, our next goal for QoS modeling is to determine how
those primitives correlate with QoS k

ij(t) in the QoS function f.
Previously we have evaluated two alternative machine learning
algorithms, ANN and ARMAX, in the single learner to train f
[8]. The experimental results suggest that these learning
algorithms perform quite differently depending on the QoS
fluctuation trends and primitives combination. This result
indicates that given the generality of the proposed QoS model,
the single learner is limited as we can not determine which
learning algorithm to use without expensive and extensive
analysis. In addition, even such process is performed, the
offline analysis can still become invalid at runtime.

D. Adaptive Multi-Learners for QoS Function Training

To overcome the above limitations, we propose an adaptive
multi-learners technique for updating QoS function f on the fly
and predicting the QoS values, as in Figure 2. The technique
has two main processes, namely training and prediction. At the
training process, we simultaneously apply different learners to
train the same QoS function f, but each of the learners uses
different learning algorithm to build a model. At the prediction
process, we evaluate these learning algorithms by comparing

the resulted models within the bucket on the fly; the model of
the best learning algorithm is used to predict QoS.

One of the most critical design decisions is to determine the
evaluation function that compares the models produced by
candidate learners. The basic method would be based on global
mean error of all historical samples. However as shown by
[10], given a set of primitive values as inputs, the most accurate
model using these inputs might not be the one that has the best
global error. This is because the accuracy of a model can be
sensitive to the local construct of given inputs, including the
variation of possible combination, scale and granularity, etc. As
a result, our evaluation function aims to compare both the local
error of a given inputs set produced by a model and the global
error of the said model. To measure the prediction error of QoS
over n samples, we use Symmetric Mean Absolute Percentage
Error (SMAPE) [23], calculated as 100× 1

n ∑t =1
n ∣predicted (t)−actual (t)∣

predicted (t)+actual (t)
for the total of n modeling intervals.

An algorithmic description of the training process has been
shown in Algorithm 2. At the training process, as the collected
online data increases, we continuously train two QoS models
for each learner (line 2-5): (i) A main-model that uses 100% of
the collected online data; (ii) A sub-model, which is trained
based on 70% of the total collected data. The sub-model is used
to test local and global error for its main-model of a learner. In
particular, it tests the QoS prediction error against the
remaining 30% testing data - the split of training and testing
data follows standard machine learning approach for testing
generalization errors. These generalization errors and their
corresponding samples within the testing data serve as the
local error patterns of the main-model. Finally, the main-
model, sub-model and local error patterns are put in a bucket.

An algorithmic description of the prediction process has
been shown in Algorithm 3. The prediction process is triggered
when there is need to perform prediction. In particular, the best
main-model in the bucket is used as the final model to predict
QoS. To calculate the local error of a main-model, we leverage
on the prediction error of its sub-model for each sample within
the testing data, as recorded in the local error patterns (line 3-
9). When given a set of inputs for predicting QoS, the local
error of a main-model is determined by extrapolating the
similarity between the given set of inputs and each sample
from local error patterns; the error of the most similar sample
is used as the local error (line 4-7). To this end, we apply
symmetric uncertainty based Euclidean Distance to measure
the similarity. As shown in Eq. 6, d is the distance of the given
set of inputs against a sample in the local error patterns.

d=√∑x∈ X (SU x×(P x−P ' x)
2) (6)

 Px and P'x respectively denote the value of xth primitive in
the given set of inputs and the value of the same primitive in a
sample from local error patterns. SUx is the symmetric
uncertainty value between the xth primitive and the QoS
attribute. The sample that results in the smallest d is the one
that we are seeking, then its corresponding error is used as the
local error of the main-model (line 9).

Algorithm 2 Training process in adaptive multi-learners

Inputs: given the column entries of SPk
ij(t) form Algorithm 1 and

a set of candidate learning algorithms
Declare: <Mmain, Msub, L> - a vector of main-model, sub-model
 and its local error pattern.
 bucket - a collection of model vectors.
Outputs: a bucket of model vectors for a QoS attribute QoS k

ij

1. simultaneously, for each candidate learning algorithm do
2. find the optimal number of row entries (i.e., the value of q
 in Eq. 3) for SPk

ij(t) if it has not been predefined for this
 learning algorithm.
3. train main-model Mmain and sub-model Msub using SP k

ij(t)
4. test the sub-model for building local error pattern L
5. bucket := bucket ∪ <Mmain, Msub, L>
6. end for

Algorithm 3 Prediction process in adaptive multi-learners

Inputs: given a set of inputs P and the bucket from Algorithm 2
Declare: S - the current sample
 Sselected - the most similar sample to P
 d - the distance between P and the current sample
 dsmallest - the smallest distance between P and a sample
 Elocal - the local error of the current main-model
 Eglobal - the global error of the current main-model
 E - the final error of the current main-model
 Esmallest - the smallest final error of a main-model
 Mselected - the selected main-model for prediction
Outputs: the predicted QoS value of QoS k

ij

1. start prediction
2. for each <Mmain, Msub, L> in the bucket of QoS k

ij do
3. for each sample S in the local error pattern L of Msub do
4. calculate distance d between P and S using Equation 6
5. if dsmallest > d then
6. dsmallest := d, Sselected := S
7. end if
8. end for
9. get the error of Sselected as the local error Elocal of Mmain
10. get the global error Eglobal of Mmain
11. evaluate final error E of Mmain using Equation 7
12. if Esmallest > E then
13. Esmallest := E, Mselected := Mmain
14. end if
15. end for
16. predict(P) using the selected main-model Mselected
17. end prediction

On the other hand, the global error of a main-model is the
mean errors of all samples within the 30% testing data
produced by its sub-model (line 10). Finally, the evaluation
function selects the best main-model for a given set of inputs
by examining on both the local and global error of all main-
models in the bucket, as formally depicted in Eq. 7 (line 11-14).

Ei=α×E local
i +β×E global

i (7)

where Ei , Elocal
i and E global

i denote the final, local and global
error of the ith main-model respectively. α and β are two
heuristics expressing the relative importance of local and global
errors. We have set the initial value of α and β as 0.1, which
means the local and global error are equally important from the

beginning. The selected main-model and its learning algorithm
for a given inputs is the one that has the smallest Ei (line 16).

To capture the right weight of local and global errors, α
and β are updated via Eq. 8 when new data is collected.

α=α+Δα ,β=β+Δβ

s.t. {Δα=eα=0,β=1−eα=1,β=0 if eα=1,β=0<eα=0,β=1

Δβ=eα=1,β=0−eα=0,β=1 if eα=1,β=0>eα=0,β=1

 (8)

Specifically, eα=1,β=0 is the prediction error of new data
produced by the selected main-model when α=1 and β=0 .
Similarly, eα=0,β=1 is the error produced by the selected main-
model when α=0 and β=1 . In this way, the error that is more
useful in the selection will gradually gain more importance.

As mentioned in Section II-C, we employ three different
learning algorithms (i.e., ARMAX, ANN and RT) in the
adaptive multi-learners. Our approach is flexible as new
algorithms can be added or old algorithms can be
removed/substituted if needed. The online training of these
learning algorithms follows standard machine learning
procedure, interested readers could refer to our previous work
[8] (ANN and ARMAX) and [14] (RT) for detailed training
process in the cloud; and [17,18,19] for their detailed formulas.

V. EXPREIMENTS AND EVALUATION

To evaluate our approach, we experimentally assess its
accuracy and overhead. The testbed is a private cloud with
numbers of PMs, each of which has Intel i7 2.8GHz Quad
Cores and 4GB RAM. The PMs use Xen [5] as the hypervisor
and the modeling process is running on Dom0. To eliminate the
interference caused by modeling, we allocated one CPU core
and 1.2GB RAM to Dom0, which tends to be sufficient. Our
approach is implemented as a middleware based on Encog [2]
and Apache Mathematics [1] using Java. To simulate QoS
interference caused by the VMs while not exhausting
resources, we run three co-hosted VMs on each PM; the
remaining resources are evenly allocated to the co-hosted VMs.

Our experiments leverage on RUBiS [6], which is a cloud-
based application consists of 26 co-located services using the
eBay.com model. For simplicity, we have used three RUBiS
snapshots, each of which consists of a 2-tiers (i.e., application
and database tiers) based RUBiS application; the three RUBiS
snapshots differ in terms of the database volume size ranging
from 1GB to 5GB data. Each RUBiS snapshot is deployed with
a software stack including Tomcat and MySQL on each co-
hosted VM of a master PM; and we have implemented sensors
deployed on each service-instance and VM for sending the
online data to Data Collector. For each RUBiS snapshot on the
master PM, the application tier is replicated to all other PMs in
the cloud; and the replicated application tiers of each of the
three RUBiS snapshots are linked to three dedicated load
balancers. Three client emulators are used and they apply
read/write pattern to generate requests for each load balancer.

To simulate a realistic workload within the capacity of our
testbed, we vary the number of clients proportionally according
to the FIFA98 workload [7], which is compressed in the way
that the fluctuation of a day in the trend corresponds to 200
secs in our case. This setup can generate up to 400 parallel

TABLE I. THE EXAMINED QOS ATTRIBUTES AND PRIMITIVES

QoS and primitive Description

Output

Response time (ms) The leaped time between the service-
instance receives and replies a request.

Throughput (req/min) The rate of completed requests.
Reliability (%) The percentage of requests that being

completed less than a threshold. (30 ms)
Availability (%) The percentage of time that no requests are

timeout. (60 ms)

CP input
CPU (%) Observed CPU percentage of a VM.

Memory (MB) Observed Memory of a VM.
Thread Observed maximum concurrent threads of a

service-instance. (a modified control knob of
Tomcat's maxThread property)

EP input Workload (req/min) Observed request rate of a service-instance.

requests, we believe that such compression is realistic and large
enough to simulate QoS interference in a public cloud. The
sampling and modeling intervals are both 120 secs with the
total of 500 intervals where the first 150 intervals use a static
and stable workload trend aiming at providing some essential
data for the modeling; whereas the rear 350 intervals follow the
FIFA98 trend. This setup can generate one new sample per
interval for updating the model.

A. The QoS Attributes, Primitives and Evaluation Procedure

The concrete QoS attributes and primitives depend on
scenarios. For the simplicity of exposition, we have selected
commonly used QoS attributes and primitives in the evaluation,
but it is worth noting that our approach is not limited to these
dimensions. As listed in Table I, these QoS attributes and
primitives are per-service except for CPU and memory as they
are shared on a VM. For each service-instance, a QoS model
can at most has 4 direct primitives (i.e., CPU, memory, thread
and workload of the said service-instance); 54 indirect
primitives: i.e. 2 (thread and workload)×25 (co-located service-
instances)+4 (CPU and memory of another two co-hosted
VMs). This combination has a size of 58 possible relevant
primitives for each service-instance.

We evaluate the prediction accuracy on the fly; and for each
experiment run, we examine the accuracy of one interval ahead
prediction: by the end of interval t, the QoS models are trained
based on historical data up to t-1, and then the predicted QoS
value at t is compared with the actual value using SMAPE.

B. Accuracy Results for Hybrid Multi-Learners

To assess our hybrid multi-learners (denoted as HYBRID) for
primitives selection, we compare its effect on accuracy with
three other selection techniques, these are: single learner with
mR (denoted as SINGLE-MR), single learner with mRMR
(denoted as SINGLE-MRMR) and the FIXED technique that statically
uses certain primitives (CPU and memory in our case) as inputs
[e.g., 10] - we modified the model from per-VM to per-service.
For all cases, we apply three widely used learning algorithms
(i.e., ANN, ARMAX and RT) for QoS function training under
all QoS attributes. By leveraging on the procedure in Section
V-A, for each selection technique, we use the SMAPE for the
rear 350 out of 500 intervals in one experiment run; we
calculate the mean accuracy of all service-instances on one VM
of the master PM and the reported results are computed by
averaging 10 runs.

ANN ARMAX RT

0
10
20
30
40
50
60

13
.5

1

44
.8

5

17
.4

2

15
.9

51
.4

4

20
.2

1

21
.8

4

56
.4

7

20
.0

1

30
.7

3

53
.4

6

21
.0

9

hybrid
single-mR
single-mRMR
fixed

S
M

A
P

E
 (

%
)

(a) Response Time
ANN ARMAX RT

0

10

20

30

40

13
.7

5

15
.0

2

22
.0

7

16
.5

9

17
.0

4

24
.4

30
.1

8

17
.3

1

30
.7

9

18
.5

6

17
.8

7

25
.8

1

hybrid
single-mR
single-mRMR
fixed

S
M

A
P

E
 (

%
)

(b) Throughput

ANN ARMAX RT

0

0.5

1

1.5

0.
32

0.
03

0.
38

1.
2

0.
04

0.
59

0.
45

0.
05

0.
57

0.
36

0.
06

0.
37

hybrid
single-mR
single-mRMR
fixed

S
M

A
P

E
 (

%
)

(c) Reliability
ANN ARMAX RT

0

0.5

1

1.5

0.
61

0.
05

0.
68

0.
78

0.
07

0.
64

0.
65

0.
03

1.
32

0.
68

0.
05

0.
83

hybrid
single-mR
single-mRMR
fixed

S
M

A
P

E
 (

%
)

(d) Availability

Fig. 3. Accuracy of different primitives selection techniques under various QoS attributes and learning algorithms.

TABLE II. THE NUMBER OF INPUTS AND MEAN PREDICTION ERRORS

hybrid multi-
learners

single-mR single-
mRMR

fixed

Mean SMAPE (%) 10.7 12.4 15 14.2
Number of inputs 5 to 8 30 to 44 2 to 3 2

The first row in Table II summaries the mean prediction
error of each technique for all four QoS attributes and three
learning algorithms, which we have examined; the second row
shows the model complexity produced by each technique. We
can see that the model produced by HYBRID (5-8 inputs) achieves
dramatic reduction on model complexity in contrast to that of
SINGLE-MR (30-44 inputs). In addition, the HYBRID performs better
in terms of accuracy (10.7% to 12.4%). On the other hand, the
HYBRID seems to be more complex in terms of model inputs than
the SINGLE-MRMR and FIXED. Nevertheless, their accuracies are
significantly worse than that of HYBRID (15% and 14.2% to
10.7%); because two inputs are too simple to handle the
correlation when QoS fluctuates.

To better comment on the accuracy of our technique, Figure
3(a) shows the result for response time. We can clearly see that
for all three learning algorithms, applying HYBRID in primitives
selection produces the best accuracy when compared with all
the single learners. In particular, the reduction on prediction
error ranges from 2.39% (13.51% to 15.9% against SINGLE-MR
on ANN) to 17.22% (13.51% to 30.73% against FIXED on
ANN). Similar result can be observed in Figure 3(b), which
shows the accuracy for throughput. The HYBRID is superior to the
others for all algorithms with improvement ranging from
2.02% (15.02% to 17.04% against SINGLE-MR on ARMAX) to
16.43% (13.75% to 30.18% against SINGLE-MRMR on ANN). It
is worth noting that although in most cases HYBRID only
improves on the accuracy of SINGLE-MR by around 2%, it can
achieve such improvement with the benefits of using only 5 to
8 inputs as when compared with 30 to 44 inputs for SINGLE-MR.
The accuracy for reliability and availability are illustrated in
Figure 3(c) and 3(d). The HYBRID is again better than the others
on ANN and ARMAX for reliability; it is also the best one on
ANN for availability. Interestingly, it can be noticed that there
are cases where HYBRID does not result in the best accuracy, i.e.,
on RT for reliability; on AMRAX and RT for availability. This
is because the trends for reliability and availability are much

more stable than that for response time and throughput.
Therefore, the sensitivity of certain learning algorithms to the
number of inputs are amplified; and this leads to over-fits.
However, the differences of accuracy between HYBRID and the
best single learner ranges from 0.01% to 0.04%, which is
marginal as when compared to the improvement that HYBRID
offers. In summary, our hybrid technique is able to result in
adequate model complexity and reduce the prediction error,
especially when QoS fluctuates.

C. Accuracy Results for Adaptive Multi-Learners

To evaluate our adaptive multi-learners technique (denoted
as ADAPTIVE) for QoS function training, we follow the evaluation
procedure described in Section V-A. In particular, we compare
the accuracy of ADAPTIVE with that of the single learner-based
learning algorithms (i.e., ANN, ARMAX and RT) under
different QoS attributes. For each learning algorithm, we
examine the SMAPE for the rear 350 out of 500 intervals in
each experiment run; in addition, we use the mean accuracy of
all service-instances on one VM of the master PM and the
reported results are the average of 10 runs. In all cases, we
apply hybrid multi-learners technique for primitives selection.

In Figure 4, (a) shows the comparison result for response
time: we can see that ANN is the best learning algorithm in
contrast to ARMAX and RT; and the ADAPTIVE is able to achieve
similar accuracy (13.82% error) to ANN (13.51% error). (b)
illustrates the result for throughput, where the ANN again
performs better than the other two. The figure clearly shows
that ADAPTIVE (14.16% error) is only slightly worse than ANN
(13.75% error). These results indicate that although the ADAPTIVE
might occasionally produce false positive/negative for selecting
the best learning algorithm, it is still able to produce very
closed accuracy to the best learning algorithm for a QoS
attribute. In cases of reliability (c) and availability (d), we can
see that in both QoS attributes, the ADAPTIVE is able to produce
the same prediction error (0.03% and 0.05%) as the best
learning algorithm, which is ARMAX. This result means that
the ADAPTIVE successfully determines the best learning algorithm
along the QoS trend. In summary, we can note that although the
algorithms behave differently depends on different QoS trends,
our adaptive technique can still continuously select the suited

0

10

20

30

40

50

13
.8

2
13

.5
1

44
.8

5
17

.4
2

Adaptive
ANN
ARMAX
RTS

M
A

P
E

 (
%

)

(a) Response Time

0

5

10

15

20

25

14
.1

6
13

.7
5

15
.0

2
22

.0
7

Adaptive
ANN
ARMAX
RTS

M
A

P
E

 (
%

)

(b) Throughput

0

0.1

0.2

0.3

0.4

0.
03

0.
32

0.
03

0.
38

Adaptive
ANN
ARMAX
RTS

M
A

P
E

 (
%

)

(c) Reliability

0

0.2

0.4

0.6

0.8

0.
05

0.
61

0.
05

0.
68

Adaptive
ANN
ARMAX
RTS

M
A

P
E

 (
%

)

(d) Availiability

Fig. 4. Accuracy of different learning algorithms for various QoS attributes.

0 50 100 150 200 250 300 350

0

200

400

600

800

T
hr

ou
g

hp
ut

 (r
eq

/m
in

)

Predicted
Actual

Sampling intervals
0 50 100 150 200 250 300 350

0

500

1000

1500

R
es

po
n

se
 T

im
e

 (m
s)

Sampling intervals

Predicted
Actual

0 50 100 150 200 250 300 350

0

50

100

150

R
el

ia
bi

lit
y

(%
)

Sampling intervals

Predicted
Actual

0 50 100 150 200 250 300 350

70

80

90

100

110

A
va

ila
bi

lit
y

(%
)

Sampling intervals

Predicted
Actual

Fig. 5. The actual and predicted QoS values for an instance of the service namely SEARCHITEMBYCATEGORY in one run.

one to predict QoS and result in good accuracy; it is also less
sensitive to different QoS trends. Moreover, our solution
eliminates the need of heavy human intervention and the errors
that can be introduced by human analysis.

D. Detailed Accuracy

Figure 5 illustrates examples of the actual and predicted
QoS values for all the considered QoS attributes. Due to
limited space, we have used an instance of the service named
SEARCHITEMBYCATEGORY as the example. We can see that the
prediction of the hybrid and adaptive multi-learners approach
diverts from the actual QoS scale at some early peak points,
e.g., the 30th interval for throughput. We believe that such
inaccuracy is due to the applied FIFA98 trend has limited
seasonality, thus the modeling approach can frequently
encounter 'new behaviors' of the services at peak points,
especially during the early stages of fluctuated trend. However,
the figure clearly shows that the multi-learners approach is able
to quickly evolve itself and detect most of the change-points in
the remaining trend, given that the subsequent predictions are
good even for the peak and trough.

E. Modeling Overhead

To assess the overhead of our approach, we compare the
execution time of HYBRID to that of SINGLE-MR and SINGLE-MRMR
for primitives selection; we also examine the execution time of
ADAPTIVE to that of ANN, ARMAX and RT for QoS function
training. We have used an instance of the service named
SEARCHITEMBYCATEGORY as the example and the experiments are
performed using the rear 10 out of 500 intervals. We report on
the average results of all QoS attributes over 10 runs.

Figure 6 (left) shows the performance overhead for
different primitives selection techniques. We can see that the
HYBRID (0.65s) has relatively bigger overhead as when compared

to SINGLE-MR (0.02s); and smaller to that of SINGLE-MRMR
(0.84s). We have observed that this is due to the majority of
overhead is caused by the optimization process of Eq 5.
However, such extra overhead of HYBRID is generally acceptable
as it is still less than 1 sec. For the case of QoS function
training, Figure 6 (right) illustrates the best and worst cases for
all learning algorithms. In particular, ANN generally produces
bigger overhead as when compared to ARMAX and RT. This
is because the ANN is fundamentally more complex than the
other two. For both the best and worst cases, the ADAPTIVE has
relatively similar overhead (10s to 35.05s) to that of ANN
(5.07s to 30.09s); this is expected as the ADAPTIVE needs to wait
for the completion of all simultaneously running learning
algorithms before determine the best one to use.

As a result, the overhead of our hybrid and adaptive multi-
learners technique is acceptable under the sampling and
modeling interval of 120s, and thus it is efficient enough to be
performed online.

VI. RELATED WORK

The increasing complexity of managing services in the
cloud makes the analytical difficulty far beyond the capability
of human analysis. As a result, traditional analytical QoS model
(e.g., [9]) tends to be limited in such context. To cope with this
limitation, recent works have focused on single learner based
and semi-dynamic approaches (e.g., ANN[10], ARMAX[11],
RT [14] and linear regression[12]). Hybrid solutions are also
exist: [13] adapt kalman-filter with linear regression to model
QoS and they cluster the resulted models. However, these
approaches have not considered QoS interference and dynamic
selection of useful primitives. In addition, they do not take
software control primitives into account thus they cannot be
used in the context of PaaS.

0
0.2
0.4
0.6
0.8

1

0.
65

0.
02

0.
84

hybrid single-mR
single-mRMR

Primitives Selection Techniques

O
ve

rh
ea

d
(s

)

Adaptive ANN ARMAX RT

0

10

20

30

40

10 5.
07

0.
1

0.
4

35
.5

30
.0

9

0.
2

0.
4

Best
Worst

O
ve

rh
ea

d
(s

)

Fig. 6. Modeling overhead in terms of execution time for primitives selection
(left) and QoS function training (right) on SEARCHITEMBYCATEGORY.

Despite QoS interference being core to the problem of QoS
modeling in the cloud, there has been very little attempts:
online [24] and offline [15] work exist for modeling QoS
interference caused by the co-hosted VMs. Unlike our work,
[15] do not consider software control primitives and they rely
on fixed selection of primitives. [24] is the closest work to this
paper as they consider software control primitives and use
Simplex Reduction to do dynamic primitives selection, the QoS
function training is handled by reinforcement learning. In
contrast, our approach works on a finer model granularity of
service instances rather than VMs. By doing so, we can also
cope with the interferences caused by co-located services on a
VM. In addition, we use hybrid and adaptive multi-learners to
select the model inputs and train QoS function on the fly, which
has been shown to be effective and time efficient.

Recent approaches [9,10,11,12,14] are single learner-based,
which are realized through adapting a single technique for
modeling how primitives correlate with QoS. These approaches
require extensive human analysis and investigation. [16]
alternatively propose a method to predict the utilization of
hardware control primitive using an ensemble solution where
the results from different learning algorithms are combined in a
weighted-sum relation. As a result, their approach is highly
sensitive to the similarity of candidate learners. Our work on
the other hand, dynamically select the best algorithm for
predicting the correlation between QoS and its primitives.

VII. CONCLUSION AND FUTURE WORK

We have proposed a novel hybrid and adaptive multi-
learners approach for online QoS modeling in the cloud. In
particular, we have applied a hybrid approach to determine
which and when primitives correlate with QoS. We have
described an adaptive solution to model how primitives
correlate with QoS, and dynamically select the best learning
algorithm for prediction. Experimentally, we have evaluated
our approach with respect to accuracy and overhead using
RUBiS and the FIFA workload. The results reveal that the
proposed approach produces better and more stable accuracy
than the other state-of-the-art models with adequate
complexity. In addition, it results in acceptable overhead and is
able to eliminate the possible errors introduced by the human
for selecting modeling inputs and learning algorithms. In future
work, we will report on use of the modeling approach for
elastic autoscaling in the cloud.

REFERENCES

[1] Apache Mathematics Library, http://commons.apache.org/math/
[2] Encog Framework, http://www.heatonresearch.com/encog

[3] Google App Engine, http://code.google.com/appengine/
[4] Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/
[5] Xen: a virtual machine monitor, http://xen.xensource.com/
[6] Rice University Bidding Systems, http://rubis.ow2.org/
[7] M. Arlitt and T. Jin, "A workload characterization study of the

1998 world cup web site," IEEE Network, 14(3), pp. 30 –37,
May 2000.

[8] T. Chen and R. Bahsoon "Self-adaptive and sensitivity-aware
QoS modeling for the cloud," in the 8th SEAMS, pp. 43 –52,
May 2013.

[9] Y. Chen, S. Iyer, X. Liu, D. Milojicic and A. Sahai, "SLA
decomposition: translating service level objectives to system
level thresholds," in the 4th Conference on Autonomic
Computing, 2007.

[10] S. Kundu, R. Rangaswami, A. Gulati, M. Zhao and K. Dutta,
"Modeling virtualized applications using machine learning
techniques," in 8th Conference on Virtual Execution
Environments, pp. 3-14, 2012.

[11] Q. Zhu and G. Agrawal, "Resource provisioning with budget
constraints for adaptive applications in cloud environments," in
19th ACM Symposium on High Performance Distributed
Computing, 2010.

[12] H.C. Lim, S.B. Jeffrey and S. Chase, "Automated Control for
Elastic Storage," in 10th Conference on Autonomic Computing,
2010.

[13] H. Ghanbari et al, "Tracking Adaptive Performance Models
Using Dynamic Clustering of User Classes," In 2nd conference
on performance engineering, 2011.

[14] P. Xiong et al, "Intelligent management of virtualized resources
for database systems in cloud environment," In 27th Conference
on Data Engineering, 2011.

[15] Q. Zhu and T. Tung "A Performance Interference Model for
Managing Consolidated Workloads in QoS-Aware Clouds," in
5th IEEE International Conference on Cloud Computing, 2012.

[16] Y. Jiang et al, "Self-adaptive Cloud Capacity Planning," in 9th
IEEE International Conference on Services Computing, 2012.

[17] W. S. Sarle, Neural networks and statistical models, 1994.
[18] G.Box, G.M. Jenkins and G.C. Reinsel, Time series analysis:

forecasting and control, third edition. Prentice-Hall, 1994.
[19] L. Rokach and O. Maimon, Data mining with decision trees:

theory and applications, World Scientific Pub Co Inc, 2008.
[20] J.Li et al, "Profit-based experimental analysis of IaaS cloud

performance: impact of software resource allocation," in 9th
IEEE International Conference on Service Computing, 2012.

[21] I.H. Witten, E. Frank, Data mining: practical machine work
learning tools and techniques, Morgan Kaufmann: Los Altos,
CA, 2005.

[22] H. Peng et al, "Feature selection based on mutual information
criteria of max-dependency, max-relevance, and min-
redundancy," IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 27, no. 8, pp. 1226-38, Aug, 2005.

[23] B.E. Flores, "A pragmatic view of accuracy measurement in
forecasting," Omega (Oxford), vol. 14, no. 2, pp. 93-98, 1986.

[24] X. Bu, J. Rao and C.Z. Xu. "Coordinated self-configuration of
virtual machines and appliances using a model-free learning
approach." IEEE Transactions on Parallel and Distributed
Systems, vol.24, no.3, 2013.

[25] M.Riedmiller and H.Braun, "RPROP-a fast adaptive learning
algorithm," in Proc. of ISCIS VII, University, 1992.

[26] L. Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone,
Classification and Regression Trees, Wadsworth, Belmont, 1984.

[27] B.Widrow and D. Samuel, Stearns: adaptive signal processing,
Prentice Hall, 1985.

	I. Introduction
	II. Models and Problem Analysis
	A. Cloud System Model
	B. Cloud Primitives Decomposition and Partitioning
	C. QoS Model for Interference

	III. Overview of the Online QoS Modeling Approach in Cloud
	IV. Motivation and Design of the Multi-Learners
	A. Limitation of Single Learner in Primitives Selection
	B. Hybrid Multi-Learners for Primitives Selection
	C. Limitations of Single Learner in QoS Function Training
	D. Adaptive Multi-Learners for QoS Function Training

	V. Expreiments and Evaluation
	A. The QoS Attributes, Primitives and Evaluation Procedure
	B. Accuracy Results for Hybrid Multi-Learners
	C. Accuracy Results for Adaptive Multi-Learners
	D. Detailed Accuracy
	E. Modeling Overhead

	VI. Related Work
	VII. Conclusion and Future Work
	References

